Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array

文献类型: 外文期刊

第一作者: Zhu, Bo

作者: Zhu, Bo;Niu, Hong;Zhang, Wengang;Wang, Zezhao;Liang, Yonghu;Guan, Long;Guo, Peng;Chen, Yan;Zhang, Lupei;Gao, Xue;Gao, Huijiang;Xu, Lingyang;Li, Junya;Guo, Yong;Xu, Lingyang

作者机构:

关键词: Fatty acid;Genome-wide association study;Genomic prediction;High-density genotypes;Simmental cattle

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2017 年 18 卷

页码:

收录情况: SCI

摘要: Background: Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Results: Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. Conclusions: We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.

分类号:

  • 相关文献

[1]Estimation of linkage disequilibrium levels and haplotype block structure in Chinese Simmental and Wagyu beef cattle using high-density genotypes. Niu, Hong,Zhu, Bo,Guo, Peng,Zhang, Wengang,Xue, Jinglong,Chen, Yan,Zhang, Lupei,Gao, Huijiang,Gao, Xue,Xu, Lingyang,Li, Junya.

[2]Association of the leptin gene E2-169T > C and E3-299T > A mutations with carcass and meat quality traits of the Chinese Simmental-cross steers. Tian, Jing,Zhao, Zhihui,Yu, Zhongjiang,Yang, Runjun,Zhang, Lupei,Li, Junya,Zhang, Qingfeng. 2013

[3]Establishment and characterization of a fibroblast line from Simmental cattle. Li, Lin-feng,Guan, Wei-jun,Ma, Yue-hui,Yue, Hua,Ma, Jianzhang. 2009

[4]Genomic prediction with epistasis models: on the marker-coding-dependent performance of the extended GBLUP and properties of the categorical epistasis model (CE). Martini, Johannes W. R.,Gao, Ning,Cardoso, Diercles F.,Erbe, Malena,Simianer, Henner,Gao, Ning,Cardoso, Diercles F.,Cardoso, Diercles F.,Erbe, Malena,Cantet, Rodolfo J. C.. 2017

[5]Accuracy of genomic prediction for growth and carcass traits in Chinese triple-yellow chickens. Liu, Tianfei,Qu, Hao,Luo, Chenglong,Shu, Dingming,Wang, Jie,Liu, Tianfei,Lund, Mogens Sando,Su, Guosheng,Liu, Tianfei,Qu, Hao,Luo, Chenglong,Shu, Dingming,Wang, Jie. 2014

[6]Genomic heritability estimation for the early life-history transition related to propensity to migrate in wild rainbow and steelhead trout populations. Hu, Guo,Hu, Guo,Wang, Chunkao,Da, Yang. 2014

[7]Canine hip dysplasia is predictable by genotyping. Zhang, Z.,Guo, G.,Wang, Y.,Zhang, Y.,Guo, G.,Zhou, Z.,Li, J.,Zhou, Z.,Hunter, L.,Friedenberg, S.,Krotscheck, U.,Todhunter, R.,Zhu, L.,Lust, G.,Harris, S.,Jones, P.,Sandler, J.,Zhao, K.,Zhou, Z.. 2011

[8]Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis. Guo, Peng,Zhu, Bo,Niu, Hong,Wang, Zezhao,Liang, Yonghu,Chen, Yan,Zhang, Lupei,Gao, Xue,Gao, Huijiang,Xu, Lingyang,Li, Junya,Guo, Peng,Ni, Hemin,Guo, Yong,Hay, El Hamidi A.,Wu, Xiaolin,Wu, Xiaolin. 2018

[9]Accuracy of genomic prediction using low-density marker panels. Zhang, Z.,Ding, X.,Liu, J.,Zhang, Q.,Zhang, Z.,de Koning, D. -J.,Zhang, Z.,de Koning, D. -J.,de Koning, D. -J..

[10]Effects of marker density and minor allele frequency on genomic prediction for growth traits in Chinese Simmental beef cattle. Zhu Bo,Zhang Jing-jing,Niu Hong,Guan Long,Guo Peng,Xu Ling-yang,Chen Yan,Zhang Lu-pei,Gao Hui-jiang,Gao Xue,Li Jun-ya. 2017

[11]A genome-wide association study identifies major loci affecting the immune response against infectious bronchitis virus in chicken. Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Shu, Dingming,Hu, Xiaoxiang,Li, Ning,Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Shu, Dingming. 2014

[12]Genome-wide association study (GWAS) of resistance to head smut in maize. Wang, Ming,Yan, Jianbing,Zhang, Xiaobo,Xiao, Yannong,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2012

[13]Genome-wide association study of antibody response to Newcastle disease virus in chicken. Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Li, Chunyu,Yang, Chunfen,Shu, Dingming,Hu, Xiaoxiang,Li, Ning,Luo, Chenglong,Qu, Hao,Ma, Jie,Wang, Jie,Li, Chunyu,Yang, Chunfen,Hu, Xiaoxiang,Shu, Dingming. 2013

[14]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[15]Genome-wide association study of salt tolerance at the seed germination stage in rice. Wu, Zhichao,Zhang, Xiaojing,Wang, Mingming,Zhang, Congshun,Zhang, Fan,Zhou, Yongli,Li, Zhikang,Shi, Yingyao,Gao, Lingling,Zhou, Yongli,Li, Zhikang. 2017

[16]Genome-wide association study of resistance to rough dwarf disease in maize. Weng, Jianfeng,Zhang, Degui,Zhang, Xiaocong,Shi, Liyu,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Ci, Xiaoke,Bai, Li,Li, Xinhai,Zhang, Shihuang,Yang, Xiaoyan,Meng, Qingchang,Yuan, Jianhua,Guo, Xinping.

[17]Genome-Wide Association Analysis of Meat Quality Traits in a Porcine large White x Minzhu Intercross Population. Chen, Shaokang,Wang, Chuduan,Chen, Shaokang,Wang, Chuduan,Luo, Weizhen,Cheng, Duxue,Wang, Ligang,Li, Yong,Ma, Xiaojun,Liu, Xin,Li, Wen,Liang, Jing,Yan, Hua,Zhao, Kebin,Wang, Lixian,Zhang, Longchao,Song, Xin.

[18]Genome-wide association studies for hematological traits in swine. Wang, J. Y.,Luo, Y. R.,Fu, W. X.,Lu, X.,Zhou, J. P.,Ding, X. D.,Liu, J. F.,Zhang, Q.,Wang, J. Y.,Lu, X.,Zhou, J. P.. 2013

[19]Quantitative trait loci for the number of vertebrae on Sus scrofa chromosomes 1 and 7 independently influence the numbers of thoracic and lumbar vertebrae in pigs. Zhang Long-chao,Liu Xin,Liang Jing,Yan Hua,Zhao Ke-bin,Li Na,Pu Lei,Shi Hui-bi,Zhang Yue-bo,Wang Li-gang,Wang Li-xian. 2015

[20]Detection of candidate genes for growth and carcass traits using genome-wide association strategy in Chinese Simmental beef cattle. Zhang, Wengang,Xu, Lingyang,Gao, Huijiang,Wu, Yang,Gao, Xue,Zhang, Lupei,Zhu, Bo,Song, Yuxin,Li, Junya,Chen, Yan,Wu, Yang,Bao, Jinshan. 2018

作者其他论文 更多>>