Expression of two uricase (Nodulin-35) genes in a non-ureide type legume, Medicago sativa

文献类型: 外文期刊

第一作者: Cheng, XG

作者: Cheng, XG;Nomura, M;Takane, K;Kouchi, H;Tajima, S

作者机构:

关键词: alfalfa;gene expression;Medicago sativa;Nod-35;ureide;uricase (EC 1.7.3.3)

期刊名称:PLANT AND CELL PHYSIOLOGY ( 影响因子:4.927; 五年影响因子:5.516 )

ISSN: 0032-0781

年卷期: 2000 年 41 卷 1 期

页码:

收录情况: SCI

摘要: Two cDNA clones, MsU2 and MsU9 encoding uricase (EC 1.7.3.3, Nodulin-35) were isolated from a cDNA library prepared from nodule tissues of alfalfa, Medicago sativa, plants. Both MsU2 and MsU9 encoded 308 amino acid polypeptides with a difference of 5 amino acids, and the deduced amino acid sequences shared 98% homology. Between these two cDNA clones and uricase genes of soybean which were designated as Nod-35s, more than 80% identity was observed in nucleotides and deduced amino acid sequences, suggesting that these MsU2 and MsU9 are homologs of Nod-35. Using the reverse transcription-PCR technique, we detected the transcripts of these two genes in almost all tissues of alfalfa. The operation of uricase genes was confirmed by the presence of ureide in the xylem sap and uricase activity in the nodules. In situ hybridization analysis revealed that MsU2 and MsU9 were expressed only in uninfected cells of the infected zone of the nodule tissue. The cell specific-expression of the two uricase genes was observed in an identical manner to that of Nod-35 in soybean nodules.

分类号:

  • 相关文献

[1]Effect of exogenous NH4+-N supply on distribution of ureide content in various tissues of alfalfa plants, Medicago sativa. Cheng, XG,Nomura, M,Sato, T,Fujikake, H,Ohyama, T,Tajima, S. 1999

[2]Effect of rhizobia symbiosis on lignin levels and forage quality in alfalfa (Medicago sativa L.). Zhang, Zhiqiang,Chang, Leqin,Cao, Yuman,Zhang, Tong,Wang, Yafang,Liu, Yushi,Zhang, Pan,Hu, Tianming,Yang, Peizhi,Zhang, Zhiqiang,Shao, Linhui,Zhang, Pan,Sun, Xiaoqin,Wu, Yajun.

[3]Completion of the agronomic evaluations of Medicago ruthenica [(L.) Ledebour] germplasm collected in Inner Mongolia. Campbell, TA,Bao, G,Xia, ZL. 1999

[4]Molecular cloning and characterization of a novel stress responsive gene in alfalfa. Sun, Y.,Long, R.,Yang, Q.,Kang, J.,Chao, Y.,Wu, M.,Long, R.,Wang, P.,Qin, Z.. 2012

[5]Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.). Fu, Guang-Qing,Jin, Qi-Jiang,Lin, Yu-Ting,Feng, Jian-Fei,Nie, Li,Shen, Wen-Biao,Fu, Guang-Qing,Jin, Qi-Jiang,Lin, Yu-Ting,Feng, Jian-Fei,Nie, Li,Shen, Wen-Biao,Zheng, Tian-Qing.

[6]Induction of heme oxygenase-1 with beta-CD-hemin complex mitigates cadmium-induced oxidative damage in the roots of Medicago sativa. Fu, Guangqing,Cui, Weiti,Wang, Yanqin,Shen, Wenbiao,Zhang, Liefeng,Ren, Yong,Zheng, Tianqing. 2011

[7]Physiological and antioxidant responses of three leguminous species to saline environment during seed germination stage. Wang, Xiaoshan,Gu, Hongru,Wang, Xiaoshan,Zhao, Guoqi. 2009

[8]Methane alleviates alfalfa cadmium toxicity via decreasing cadmium accumulation and reestablishing glutathione homeostasis. Gu, Quan,Chen, Ziping,Cui, Weiti,Zhang, Yihua,Yu, Xiuli,Wang, Qingya,Shen, Wenbiao,Hu, Huali. 2018

[9]Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Li, Zhenyi,Long, Ruicai,Zhang, Tiejun,Wang, Zhen,Zhang, Fan,Yang, Qingchuan,Kang, Junmei,Sun, Yan.

[10]A rapid screening method for evaluating resistance of alfalfa (Medicago sativa L.) to Fusarium root rot. Cong, L. L.,Wang, Z.,Kang, J. M.,Zhang, T. J.,Yang, Q. C.,Cong, L. L.,Sun, Y.,Biligetu, B.. 2018

[11]Effects of dietary alfalfa flavonoids on the performance, meat quality and lipid oxidation of growing rabbits. Dabbou, Sihem,Schiavone, Achille,Gasco, Laura,Rotolo, Luca,Gasco, Laura,Schiavone, Achille,Gai, Francesco,Pozzo, Luisa,Tong, Jian Ming,Dong, Xiao Fang,Rubiolo, Patrizia. 2018

[12]Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Zhang, Tiejun,Kesoju, Sandya,Hu, Jinguo,Yu, Long-Xi,Zhang, Tiejun,Kesoju, Sandya,Greene, Stephanie L.,Fransen, Steven. 2018

[13]Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L.. Li, Zhen-yi,Long, Rui-cai,Zhang, Tie-jun,Yang, Qing-chuan,Kang, Jun-mei.

[14]Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana. Chao, Yuehui,Zhang, Tiejun,Yang, Qingchuan,Kang, Junmei,Qin, Zhihui,Sun, Yan,Gruber, Margaret Yvonne,Qin, Zhihui. 2014

[15]Genetic relationships among alfalfa gemplasms resistant to common leaf spot and selected Chinese cultivars assessed by sequence-related amplified polymorphism (SARP) markers. Yuan, Qinghua,Wang, Yu,Li, Xiang-lin,Gao, Jianming,Gui, Zhi,Wang, Shuang,Zhao, Ximan,Xia, Buxian. 2011

[16]Protective function of narrow grass hedges on soil and water loss on sloping croplands in Northern China. Xiao, Bo,Wang, Qing-hai,Wu, Ju-ying,Huang, Chuan-wei,Yu, Ding-fang,Xiao, Bo.

[17]Allelopathic potential and volatile compounds of Manihot esculenta Crantz against weeds. Li, J.,He, S. Y.,Qin, X. D..

[18]Analysis of genetic diversity of salt-tolerant alfalfa germplasms. Jiang, J.,Yang, B. L.,Wu, Y. N.,Jin, H.,Xia, T.,Yu, S. M.,Li, J. R.. 2015

[19]Improving a method for evaluating alfalfa cultivar resistance to thrips. Fan Yao-li,Zhang Ze-hua,Fan Yao-li,Ji Ming-shan,Liu Zhong-kuan,Xie Nan,Liu Zhen-yu. 2016

[20]Yield Evaluation of Twenty-Eight Alfalfa Cultivars in Hebei Province of China. Zhang Tie-jun,Kang Jun-mei,Guo Wen-shan,Yang Qing-chuan,Zhao Zhong-xiang,Xu Yu-peng,Yan Xu-dong. 2014

作者其他论文 更多>>