Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max)

文献类型: 外文期刊

第一作者: Gao, SQ

作者: Gao, SQ;Xu, HJ;Cheng, XG;Chen, M;Xu, ZS;Li, LC;Ye, XG;Du, LP;Hao, XY;Ma, YZ

作者机构:

关键词: GmDREB gene;wheat;salt tolerance;drought tolerance

期刊名称:CHINESE SCIENCE BULLETIN ( 影响因子:1.649; 五年影响因子:1.738 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Under stress conditions such as drought, high-salinity and low-temperature, the transcription factor of DREB (dehydration responsive element binding proteins) improved efficiently stress resistance by regulating the expression of its downstream genes with various environmental stress resistance in plants. GmDREB gene (GenBank Accession No. AF514908) encoding a stress-inducible transcription factor was cloned by screening a cDNA library of Glycine max cv, Jinong 27 with yeast one-hybrid method. GmDREB gene was 910 bp in length and encoded 174 amino acids containing a conserved AP2/EREBP DNA-binding domain of 58 amino acids. Two conserved functional amino acids, valine and glutamic acid, were located on the 14th and the 19th amino acid residues in the conserved structural domain. An alkaline amino acid region (KKR) related to a nuclear localization signal was at the N-terminal, while an acidic amino acid region (DDD) related to trams-activation was at the C-terminal. Plant expression vectors were constructed and transformed into wheat by bombardment. In total, 13 transgenic plants with Vbir::GmDREB and 11 transgenic plants with rd29A::GmDREB were identified from 103 regeneration plants by molecular analysis. The drought and salt tolerances of T_1 transgenic lines with Ubi::GmDREB or rd29A::GmDREB were demonstrated to be improved as compared to wild type. The result also suggested that both Ubiquitin and rd29A promoters could effectively drive the expression of the GmDREB gene and enhance drought and salt tolerance of T_1 plants.

分类号: N1

  • 相关文献

[1]Overexpression of SlCZFP1, a Novel TFIIIA-type Zinc Finger Protein from Tomato, Confers Enhanced Cold Tolerance in Transgenic Arabidopsis and Rice. Zhang, Xin,Guo, Xiuping,Lei, Cailin,Cheng, Zhijun,Lin, Qibin,Wang, Jiulin,Wu, Fuqing,Wang, Jie,Wan, Jianmin,Wan, Jianmin.

[2]VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Chen, Honglin,Wang, Lixia,Wang, Suhua,Cheng, Xuzhen,Chen, Honglin,Wang, Lixia,Wang, Suhua,Cheng, Xuzhen,Liu, Liping.

[3]Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants. Shen, Guoxin,Wei, Jia,Qiu, Xiaoyun,Hu, Rongbin,Kuppu, Sundaram,Zhang, Hong,Auld, Dick,Blumwald, Eduardo,Gaxiola, Roberto,Payton, Paxton.

[4]Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines. Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Guo, Jun,Yu, Xiaocong,Li, Haosheng,Cheng, Dungong,Liu, Aifeng,Liu, Jianjun,Liu, Cheng,Song, Jianmin,Xu, Wen,Shen, Hao,Zhao, Shijie. 2016

[5]Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Li, Xueyin,Ma, Lingjian,Feng, Biane,Zhang, Fengjie,Tang, Yimiao,Zhang, Liping,Zhao, Changping,Gao, Shiqing,Feng, Biane,Zhang, Fengjie. 2016

[6]Phenotyping for drought adaptation in wheat using physiological traits. Monneveux, Philippe,Jing, Ruilian,Misra, Satish C.. 2012

[7]Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Wang, RRC,Li, XM,Hu, ZM,Zhang, JY,Larson, SR,Zhang, XY,Grieve, CM,Shannon, MC. 2003

[8]Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Xu, Zhongyang,Gongbuzhaxi,Wang, Changyou,Zhang, Hong,Ji, Wanquan,Xu, Zhongyang,Xue, Fei.

[9]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[10]Construction and characterization of a bacterial artificial chromosome library for the allotetraploid Gossypium tomentosum. F. Liu,Y.H. Wang,H.Y. Gao,C.Y. Wang,Z.L. Zhou,X.Y. Cai,X.X. Wang,Z.S. Zhang,K.B. Wang. 2015

[11]Cloning of 9-cis-epoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Zhang, S. J.,Song, G. Q.,Li, Y. L.,Gao, J.,Liu, J. J.,Fan, Q. Q.,Huang, C. Y.,Sui, X. X.,Chu, X. S.,Guo, D.,Li, G. Y.. 2014

[12]Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Pan, Ling,Zhang, Xinquan,Ma, Xiao,Huang, LinKai,Nie, Gang,Wang, Pengxi,Yang, Zhongfu,Li, Ji,Wang, Jianping,Zhou, Meiliang. 2016

[13]MdVHA-A encodes an apple subunit A of vacuolar H+-ATPase and enhances drought tolerance in transgenic tobacco seedlings. Dong, Qing-Long,Wang, Chun-Rong,Liu, Dan-Dan,Hu, Da-Gang,Fang, Mou-Jing,You, Chun-Xiang,Yao, Yu-Xin,Hao, Yu-Jin,Dong, Qing-Long. 2013

[14]Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Gao, XP,Wang, XF,Lu, YF,Zhang, LY,Shen, YY,Liang, Z,Zhang, DP. 2004

[15]Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Qin, Hua,Zhang, Yizheng,Gu, Qiang,Kuppu, Sundaram,Sun, Li,Zhu, Xunlu,Mishra, Neelam,Hu, Rongbin,Zhang, Hong,Shen, Guoxin,Zhang, Junling,Burow, Mark,Zhu, Longfu,Zhang, Xianlong,Payton, Paxton. 2013

[16]Genetic dissection of seminal root architecture in elite durum wheat germplasm. Sanguineti, M. C.,Li, S.,Maccaferri, M.,Corneti, S.,Rotondo, F.,Chiari, T.,Tuberosa, R.. 2007

[17]Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. He, Y. X.,Zheng, T. Q.,Wang, L. F.,Gao, Y. M.,Zhai, H. Q.,Xu, J. L.,Zhu, L. H.,Li, Z. K.,He, Y. X.,Xu, Z. J.,He, Y. X.,Hao, X. B.,Hua, Z. T.,Li, Z. K.. 2010

[18]Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. Hao, Zhuanfang,Li, Xinhai,Xie, Chuanxiao,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Liu, Lingling,Liu, Sisi,Zhang, Shihuang,Liang, Xiaoling. 2011

[19]Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Sun, Dongfa,Li, Zhigang,Yuan, Shuangrong,Jia, Haiyan,Gao, Fangyuan,Zhou, Man,Yuan, Ning,Wu, Peipei,Hu, Qian,Luo, Hong,Jia, Haiyan,Jia, Haiyan,Gao, Fangyuan. 2017

[20]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

作者其他论文 更多>>