Comprehensive Transcriptome Analyses Reveal Differential Gene Expression Profiles of Camellia sinensis Axillary Buds at Para-, Endo-, Ecodormancy, and Bud Flush Stages

文献类型: 外文期刊

第一作者: Hao, Xinyuan

作者: Hao, Xinyuan;Yang, Yajun;Yue, Chuan;Wang, Lu;Wang, Xinchao;Hao, Xinyuan;Yang, Yajun;Yue, Chuan;Wang, Lu;Wang, Xinchao;Horvath, David P.

作者机构:

关键词: bud dormancy;transcriptome analysis;tea plant;epigenetic mechanism;phytohormone

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To discover the bud dormancy regulation mechanism of tea plant in winter, we analyzed the global gene expression profiles of axillary buds at the paradormancy, endodormancy, ecodormancy, and bud flush stages by RNA-Seq analysis. In total, 16,125 differentially expressed genes (DEGs) were identified among the different measured conditions. Gene set enrichment analysis was performed on the DEGs identified from each dormancy transition. Enriched gene ontology terms, gene sets and transcription factors were mainly associated with epigenetic mechanisms, phytohormone signaling pathways, and callose-related cellular communication regulation. Furthermore, differentially expressed transcription factors as well as chromatin-and phytohormone-associated genes were identified. GI-, CAL-, SVP-, PHYB-, SFR6-, LHY-, ZTL-, PIF4/6-, ABI4-, EIN3-, ETR1-, CCA1-, PIN3-, CDK-, and CO-related gene sets were enriched. Based on sequence homology analysis, we summarized the key genes with significant expression differences in poplar and tea plant. The major molecular pathways involved in tea plant dormancy regulation are consistent with those of poplar to a certain extent; however, the gene expression patterns varied. This study provides the global transcriptome profiles of overwintering buds at different dormancy stages and is meaningful for improving the understanding of bud dormancy in tea plant.

分类号:

  • 相关文献

[1]Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Yue, Chuan,Cao, Hongli,Guo, Yuqiong,Ye, Naixing,Yue, Chuan,Cao, Hongli,Hao, Xinyuan,Zeng, Jianming,Qian, Wenjun,Yang, Yajun,Wang, Xinchao. 2018

[2]Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Baohua Wang,Mi Zhang,Rong Fu,Xiaowei Qian,Ping Rong,Yan Zhang,Peng Jiang,Junjuan Wang,Xuke Lu,Delong Wang,Wuwei Ye,Xinyu Zhu.

[3]Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Yue, Chuan,Cao, Hongli,Wang, Lu,Zhou, Yanhua,Hao, Xinyuan,Zeng, Jianming,Wang, Xinchao,Yang, Yajun,Wang, Lu,Zeng, Jianming,Wang, Xinchao,Yang, Yajun,Yue, Chuan,Cao, Hongli,Wang, Lu,Zhou, Yanhua,Hao, Xinyuan,Zeng, Jianming,Wang, Xinchao,Yang, Yajun.

[4]Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora 'Hang Baishao'. Zhang, Jiaping,Li, Danqing,Zhang, Dong,Zhang, Jiao,Xia, Yiping,Shi, Xiaohua,Zhou, Jianghua,Zhu, Kaiyuan,Qiu, Shuai,Wei, Jianfen. 2017

[5]Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum x G. barbadense. Peng-tao Li,Mi Wang,Guo, Xiao-ping,Shi, Yu-zhen,Yuan, You-lu,Quan-wei Lu,Qun Ge,Md. Harun or Rashid,Ai-ying Liu,Ju-wu Gong,Hai-hong Shang,Wan-kui Gong,Jun-wen Li,Wei-wu Song,Li-xue Guo,Wei Su,Shao-qi Li,Xiao-ping Guo,Yu-zhen Shi,You-lu Yuan. 2017

[6]Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. Quan Sun,Huaizhong Jiang,Xiaoyan Zhu,Weina Wang,Xiaohong He,Yuzhen Shi,Youlu Yuan,Xiongming Du,Yingfan Cai. 2013

[7]Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus. Ni, Zixin,Yang, Fan,Cao, Weijun,Zhang, Xiangle,Jin, Ye,Mao, Ruoqing,Du, Xiaoli,Li, Weiwei,Guo, Jianhong,Liu, Xiangtao,Zhu, Zixiang,Zheng, Haixue,Ni, Zixin. 2016

[8]Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Setting in Triploid Loquat (Eriobotrya japonica). Jiang, Shuang,Luo, Jun,Xu, Fanjie,Zhang, Xueying,Jiang, Shuang,Luo, Jun,Xu, Fanjie,Zhang, Xueying. 2016

[9]Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol. Luo, Chun,Zhang, Qinglin,Luo, Zhengrong,Luo, Chun. 2014

[10]Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava. Fu, Lili,Ding, Zehong,Han, Bingying,Hu, Wei,Li, Yajun,Zhang, Jiaming. 2016

[11]Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes (Vitis davidii). Sun, Lei,Fan, Xiucai,Zhang, Ying,Jiang, Jianfu,Sun, Haisheng,Liu, Chonghuai. 2016

[12]Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica. Xie, Lulu,Li, Fei,Zhang, Shifan,Zhang, Hui,Qian, Wei,Li, Peirong,Zhang, Shujiang,Sun, Rifei. 2016

[13]The Rosa chinensis cv. Viridiflora Phyllody Phenotype Is Associated with Misexpression of Flower Organ Identity Genes. Yan, Huijun,Zhang, Hao,Wang, Qigang,Jian, Hongying,Qiu, Xianqin,Wang, Jihua,Tang, Kaixue,Baudino, Sylvie,Just, Jeremy,Raymond, Olivier,Bendahmane, Mohammed,Gu, Lianfeng. 2016

[14]UFGT: The Key Enzyme Associated with the Petals Variegation in Japanese Apricot. Wu, Xinxin,Ni, Xiaopeng,Zhou, Yong,Gao, Zhihong,Wu, Xinxin,Gong, Qinghua. 2017

[15]Transcriptome Analysis of a Progeny of Somatic Hybrids of Cultivated Rice (Oryza sativa L.) and Wild Rice (Oryza meyeriana L.) With High Resistance to Bacterial Blight. Wang, Xu-Ming,Zhou, Jie,Yang, Yong,Yu, Fei-Bo,Chen, Juan,Yu, Chu-Lang,Wang, Fang,Cheng, Ye,Yan, Cheng-Qi,Chen, Jian-Ping,Yu, Fei-Bo,Chen, Juan. 2013

[16]Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Zhang, Ya-Nan,Li, Jin-Bu,Zhu, Xiu-Yun,Zhang, Long-Wa,Chen, Da-Song,Sun, Liang,Li, Zhao-Qun,Ye, Zhan-Feng,Zheng, Mei-Yan.

[17]Transcriptomic Analysis for Different Sex Types of Ricinus communis L. during Development from Apical Buds to Inflorescences by Digital Gene Expression Profiling. Tan, Meilian,Xue, Jianfeng,Wang, Lei,Fu, Chunling,Yan, Xingchu,Huang, Jiaxiang. 2016

[18]Transcriptome analysis of pale-green leaf rice reveals photosynthetic regulatory pathways. Zhao, Xia,Feng, Baohua,Chen, Tingting,Zhang, Caixia,Tao, Longxing,Fu, Guanfu,Zhao, Xia. 2017

[19]Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. Li, Xiao-Ming,Zhu, Xiu-Yun,Wang, Zhi-Qiang,Wang, Yi,Chen, Geng,Deng, Dao-Gui,Zhang, Ya-Nan,He, Peng,Sun, Liang. 2015

[20]Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea). Xiao, Zhiliang,Hu, Yang,Zhang, Xiaoli,Xue, Yuqian,Fang, Zhiyuan,Yang, Limei,Zhang, Yangyong,Liu, Yumei,Li, Zhansheng,Liu, Xing,Liu, Zezhou,Lv, Honghao,Zhuang, Mu. 2017

作者其他论文 更多>>