Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.)

文献类型: 外文期刊

第一作者: Luo, Huaiyong

作者: Luo, Huaiyong;Ren, Xiaoping;Li, Zhendong;Xu, Zhijun;Li, Xinping;Huang, Li;Zhou, Xiaojing;Chen, Yuning;Chen, Weigang;Lei, Yong;Liao, Boshou;Liu, Fei;Jiang, Huifang;Pandey, Manish K.;Varshney, Rajeev K.;Guo, Baozhu;Jiang, Xiangguo

作者机构:

关键词: Peanut;QTL;Pod length;Pod width;Hundred-pod weight;Yield

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2017 年 18 卷

页码:

收录情况: SCI

摘要: Background: Cultivated peanut (Arachis hypogaea L.), an important source of edible oil and protein, is widely grown in tropical and subtropical areas of the world. Genetic improvement of yield-related traits is essential for improving yield potential of new peanut varieties. Genomics-assisted breeding (GAB) can accelerate the process of genetic improvement but requires linked markers for the traits of interest. In this context, we developed a recombinant inbred line (RIL) mapping population (Yuanza 9102 x Xuzhou 68-4) with 195 individuals and used to map quantitative trait loci (QTLs) associated with three important pod features, namely pod length, pod width and hundred-pod weight. Results: QTL analysis using the phenotyping data generated across four environments in two locations and genotyping data on 743 mapped loci identified 15 QTLs for pod length, 11 QTLs for pod width and 16 QTLs for hundred-pod weight. The phenotypic variation explained (PVE) ranged from 3.68 to 27.84%. Thirteen QTLs were consistently detected in at least two environments and three QTLs (qPLA05.7, qPLA09.3 and qHPWA05.6) were detected in all four environments indicating their consistent and stable expression. Three major QTLs, detected in at least three environments, were found to be co-localized to a 3.7 cM interval on chromosome A05, and they were qPLA05.7 for pod length (16.89-27.84% PVE), qPWA05.5 for pod width (13.73-14.12% PVE), and qHPWA05.6 for hundred-pod weight (13.75-26.82% PVE). This 3.7 cM linkage interval corresponds to similar to 2.47 Mb genomic region of the pseudomolecule A05 of A. duranensis, including 114 annotated genes related to catalytic activity and metabolic process. Conclusions: This study identified three major consistent and stable QTLs for pod size and weight which were co-localized in a 3.7 cM interval on chromosome A05. These QTL regions not only offer further investigation for gene discovery and development of functional markers but also provide opportunity for deployment of these QTLs in GAB for improving yield in peanut.

分类号:

  • 相关文献

[1]Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). Chen, Weigang,Jiao, Yongqing,Cheng, Liangqiang,Huang, Li,Liao, Boshou,Tang, Mei,Ren, Xiaoping,Zhou, Xiaojing,Chen, Yuning,Jiang, Huifang. 2016

[2]Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Zhang, Xinyou,Zhu, Shuijin,Zhang, Xinyou,Han, Suoyi,Tang, Fengshou,Xu, Jing,Liu, Hua,Yan, Mei,Dong, Wenzhao,Huang, Bingyan. 2011

[3]Effects of Different Topdressing Conditions on Photosynthetic Characteristics and Yield for Peanuts under Mulched Drip Irrigation. Wang, Huixin,Liu, Yifei,Han, Xiaori,Song, Qiaobo,Shi, Qingwen,Wang, Huixin,Guan, Bing. 2015

[4]TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Hanif, Mamoona,Gao, Fengmei,Liu, Jindong,Wen, Weie,Zhang, Yingjun,Rasheed, Awais,Xia, Xianchun,He, Zhonghu,Cao, Shuanghe,Gao, Fengmei,Rasheed, Awais,He, Zhonghu.

[5]Genetic Analysis of Carbon Isotope Discrimination and its Relation to Yield in a Wheat Doubled Haploid Population. Wu, Xianshan,Chang, Xiaoping,Jing, Ruilian. 2011

[6]Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize. Chen, Lin,Li, Chunhui,Li, Yongxiang,Song, Yanchun,Zhang, Dengfeng,Wang, Tianyu,Li, Yu,Shi, Yunsu.

[7]Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Lv, Qiming,Zhou, Ming,Wu, Qi,Song, Xianwei,Liang, Chengzhi,Cao, Xiaofeng,Zhu, Lihuang,Huang, Zhiyuan,Xin, Yeyun,Lv, Qiming,Fu, Xiqin,Zhao, Bingran,Yuan, Longping,Zhu, Lihuang,Song, Shuhui,Tian, Dongmei,Chen, Tingting,Mao, Donghai,Tang, Mingfeng,Chen, Caiyan,Liu, Xue,Hu, Songnian,Li, Aihong,Liu, Guozhen,Li, Shigui.

[8]Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis hypogaea L.). Wan, Liyun,Li, Bei,Lei, Yong,Yan, Liying,Ren, Xiaoping,Chen, Yuning,Jiang, Huifang,Zhang, Juncheng,Liao, Boshou,Dai, Xiaofeng,Guo, Wei,Chen, Ao. 2017

[9]Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Xu, Pei,Wu, Xinyi,Wang, Baogen,Wu, Xiaohua,Hu, Yaowen,Zhou, Wen,Lu, Zhongfu,Li, Guojing,Xu, Pei,Li, Guojing,Munoz-Amatriain, Maria,Close, Timothy J.,Bao-Lam Huynh,Roberts, Philip A.. 2017

[10]Transgenic Expression and Identification of Recombinant Human Proinsulin in Peanut. Zheng Ling,Wang Yu,Wan Shu-Bo,Peng Zhen-Ying,Bi Yu-Ping,Zheng Ling,Wang Yu,Bian Fei,Wan Shu-Bo,Peng Zhen-Ying,Zheng Ling,Wang Yu,Bian Fei,Wan Shu-Bo,Peng Zhen-Ying,Bi Yu-Ping,Jiao Qi-Qing,Qu Shu-Jie,Wan Shu-Bo,Bi Yu-Ping. 2016

[11]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[12]Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. Yang, Sha,Wang, Fang,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Yang, Sha,Guo, Feng,Meng, Jing-Jing,Li, Xin-Guo,Wan, Shu-Bo,Wang, Fang. 2015

[13]Cloning of Acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli. Chen, G.,Peng, Z. Y.,Xuan, N.,Zhang, Y.,Bi, Y. P.,Chen, G.. 2012

[14]Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. Wang, Pengfei,Gao, Chao,Bian, Xiaotong,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Song, Hui,Hou, Lei,Wan, Shubo,Wang, Xingjun. 2016

[15]Peanut (Arachis hypogaea L.) Omics and Biotechnology in China. Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Liu, Shuan-Tao. 2011

[16]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[17]Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao, Chao,Wang, Pengfei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Wang, Xingjun,Ju, Zheng. 2017

[18]Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis. Wang, Pengfei,Song, Hui,Li, Changsheng,Li, Pengcheng,Li, Aiqin,Guan, Hongshan,Hou, Lei,Wang, Xingjun,Wang, Xingjun. 2017

[19]Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Wang, Pengfei,Li, Changsheng,Li, Cui,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Gao, Chao,Wan, Shubo,Wang, Xingjun,Wang, Pengfei,Li, Changsheng,Li, Cui,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Gao, Chao,Wan, Shubo,Wang, Xingjun.

[20]Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. Sun, Yong,Wang, Qingguo,Li, Zhen,Hou, Lei,Liu, Wei,Dai, Shaojun,Sun, Yong.

作者其他论文 更多>>