Modulation of protein expression in alfalfa (&ITMedicago sativa&IT L.) root and leaf tissues by &ITFusarium proliferatum&IT

文献类型: 外文期刊

第一作者: Cong Li-li

作者: Cong Li-li;Long Rui-cai;Kang Jun-mei;Zhang Tie-jun;Wang Zhen;Yang Qing-chuan;Sun Yan;Li Ming-na;Cong Li-li

作者机构:

关键词: alfalfa;proteome;2-DE;mass spectrometry;Fusarium proliferatum

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 11 期

页码:

收录情况: SCI

摘要: Alfalfa (Medicago sativa L.) is an important forage crop and is also a target of many fungal diseases including Fusarium spp. As of today, very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against Fusarium spp. and specifically against Fusarium proliferatum, the causal agent of alfalfa root rot. In this study, we used a proteomic approach to identify inducible proteins in alfalfa during a compatible interaction with F. proliferatum strain YQC-L1. Samples used for the two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF mass spectrometry were from roots and leaves of alfalfa cultivar AmeriGraze 401+Z and WL656HQ. Plants were grown in hydroponic conditions and at 4 days post inoculation with YQC-L1. Our disease symptom assays indicated that AmeriGraze 401+Z was tolerant to YQC-L1 infection while WL656HQ was highly susceptible. Analysis of differentially expressed proteins found in the 2-DE was further characterized using the MASCOT MS/MS ion search software and associated databases to identify multiple proteins that might be involved in F. proliferatum resistance. A total of 66 and 27 differentially expressed proteins were found in the roots and leaves of the plants inoculated with YQC-L1, respectively. These identified proteins were placed in various categories including defense and stress response related metabolism, photosynthesis and protein synthesis. Thirteen identified proteins were validated for their expressions by quantitative reverse transcription (qRT)-PCR. Our results suggested that some of the identified proteins might play important roles in alfalfa resistance against Fusarium spp. These finding could facilitate further dissections of molecular mechanisms controlling root rot disease in alfalfa and potentially other legume crops.

分类号:

  • 相关文献

[1]Proteomic Analysis of PEG-Induced Drought Stress Responsive Protein in TERF1 Overexpressed Sugarcane (Saccharum officinarum) Leaves. Rahman, M. Anisur,Ren, Lei,Wu, Wei,Yan, Yanchun,Rahman, M. Anisur.

[2]Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. Zhang, Yi Tong,Chen, Si Xue,Yang, Ze Zhong,Liu, Chun Guang,Zhao, Dan Dan,Ma, Yu Kun,Song, Fu Qiang,Yang, Feng Shan,Zhang, Yu Liang,Yin, Guo Hua,Zhang, Yi Tong,Chen, Si Xue,Yin, Guo Hua,Lee, Samantha,Bennett, Joan W.,Yang, Ze Zhong,Liu, Chun Guang,Zhao, Dan Dan,Ma, Yu Kun,Song, Fu Qiang,Yang, Feng Shan. 2015

[3]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[4]An integrated proteomics reveals pathological mechanism of honeybee (Apis cerena) sacbrood disease. Han, Bin,Zhang, Lan,Feng, Mao,Fang, Yu,Li, Jianke.

[5]Unraveling molecular mechanistic differences in liver metabolism between lean and fat lines of Pekin duck (Anas platyrhynchos domestica): A proteomic study. Zheng, Aijuan,Chang, Wenhuan,Zhang, Shu,Cai, Huiyi,Chen, Guilan,Lou, Ruiying,Liu, Guohua,Hou, Shuisheng.

[6]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[7]Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China. Li, Ping,Wu, Xuexia,Liu, Yujiao,Li, Ping,Liu, Yujiao,Zhang, Yanxia,Li, Ping,Liu, Yujiao. 2018

[8]Proteomic analysis of the phenotype of the scaleless wings mutant in the silkworm, Bombyx mori. Shi, Xiao-Feng,Han, Bin,Li, Yi-Nu,Zhang, Zhi-Fang,Han, Bin,Yi, Yong-Zhu,Shen, Xing-Jia,Li, Xiao-Ming.

[9]Proteomic analysis of liver development of lean Pekin duck (Anas platyrhynchos domestica). Zhang, Yunsheng,Hou, Shuisheng,Zheng, Aijuan,Liu, Guohua,Chang, Wenhuan,Zhang, Shu,Cai, Huiyi,Chen, Guilan.

[10]In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). Dai, Longjun,Kang, Guijuan,Li, Yu,Nie, Zhiyi,Duan, Cuifang,Zeng, Rizhong,Dai, Longjun,Kang, Guijuan,Li, Yu,Nie, Zhiyi,Duan, Cuifang,Zeng, Rizhong.

[11]Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Zhao, Yuanming,Tang, Zhongjie,Li, Wu,Nie, Lihong,Lv, Shuping,Zhao, Fu'an. 2012

[12]Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation. Zhou, X. -G.,Zhao, Z. -W.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.,Zhou, X. -G.,Yu, P.,Dong, C.,Yao, C. -X.,Ding, Y. -M.,Tao, N.. 2016

[13]Fumonisin detection and analysis of potential fumonisin-producing Fusarium spp. in asparagus (Asparagus officinalis L.) in Zhejiang Province of China. Wang, Jiansheng,Wang, Xiaoping,Zhou, Ying,Wang, Qiaomei,Wang, Jiansheng,Du, Liangcheng.

[14]Fusarium Populations on Chinese Barley Show a Dramatic Gradient in Mycotoxin Profiles. van der Lee, T.,Waalwijk, C.,Yang, L.,Yang, X.,Yu, D..

[15]Fusarium proliferatum Caused Mango Malformation Disease in panzhihua and Huaping Provinces of China. Lv, Y. C.,Pu, J. J.,Qia, Y. X.,Xie, Y. X.,Lu, Y.,Zhang, X.,Zhang, H.,Zhang, H. Q..

[16]A rapid screening method for evaluating resistance of alfalfa (Medicago sativa L.) to Fusarium root rot. Cong, L. L.,Wang, Z.,Kang, J. M.,Zhang, T. J.,Yang, Q. C.,Cong, L. L.,Sun, Y.,Biligetu, B.. 2018

[17]Comparative Proteomic Analysis of Spike-Development Inhibited and Normal Tillers of Wheat 3558. Zheng Yong-sheng,Gao Ai-nong,Li Li-hui,Liu Wei-hua,Ma Xiao-gang,Chi De-zhao. 2013

[18]Ultrastructural, physiological and proteomic analysis of Nostoc flagelliforme in response to dehydration and rehydration. Wang, Lingxia,You, Xiangrong,Chen, Wei,Liang, Wenyu,Zhou, Youwen,Zhang, Yaping,Cheng, Chi-Lien,You, Xiangrong.

[19]Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses. Wang, Ling,Liang, Wenyu,Gai, Yonghong,Wang, Xiaoyan,Chen, Wei,You, Xiangrong,Chen, Wei,You, Xiangrong,Liang, Wenyu.

[20]Tentative identification of sex-specific antibodies and their application for screening bovine sperm proteins for sex-specificity. Yang, Wu-Cai,Yang, Wu-Cai,Xiao, Yao,Zhang, Hua-Lin,Tang, Ke-Qiong,Yang, Li-Guo,Sang, Lei.

作者其他论文 更多>>