Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton

文献类型: 外文期刊

第一作者: Wang, Weina

作者: Wang, Weina;Geng, Shuaipeng;Sun, Quan;Long, Lu;Cai, Chaowei;Liu, Xin;Wang, Guanghao;Miao, Chen;Zhang, Xiao;Cai, Yingfan;Wang, Weina;Yang, Can;Yuan, Youlu;Du, Xiongming;Chu, Zongyan

作者机构:

关键词: NAC transcription factor;Verticillium wilt;VIGS;biotic and abiotic stress;cotton

期刊名称:G3-GENES GENOMES GENETICS ( 影响因子:3.154; 五年影响因子:3.369 )

ISSN: 2160-1836

年卷期: 2016 年 6 卷 12 期

页码:

收录情况: SCI

摘要: Elucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup. GbNAC1 protein localized to the cell nucleus. GbNAC1 was expressed in roots, stems, and leaves, and was especially highly expressed in vascular bundles. Functional analysis showed that cotton resistance to Verticillium wilt was reduced when the GbNAC1 gene was silenced using the virus-induced gene silencing (VIGS) method. GbNAC1-overexpressing Arabidopsis showed enhanced resistance to Verticillium dahliae compared to wild-type. Thus, GbNAC1 is involved in the positive regulation of resistance to Verticillium wilt. In addition, analysis of GbNAC1-overexpressing Arabidopsis under different stress treatments indicated that it is involved in plant growth, development, and response to various abiotic stresses (ABA, mannitol, and NaCl). This suggests that GbNAC1 plays an important role in resistance to biotic and abiotic stresses in cotton. This study provides a foundation for further study of the function of NAC genes in cotton and other plants.

分类号:

  • 相关文献

[1]Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Zhou, Kexue,Long, Lu,Sun, Quan,Wang, Weina,Gao, Wei,Cai, Chaowei,Mo, Jianchuan,Cheng, Jieru,Zhang, Xiangrui,Liu, Yujia,Miao, Chen,Zhang, Xiao,Cai, Yingfan,Du, Xiongming,Shi, Yuzhen,Yuan, Youlu,Chu, Zongyan.

[2]Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense. Su, Xiaofeng,Qi, Xiliang,Cheng, Hongmei.

[3]Two Lysin-Motif Receptor Kinases, Gh-LYK1 and Gh-LYK2, Contribute to Resistance against Verticillium wilt in Upland Cotton. Li, Fangfang,Qian, Shasha,Zhou, Xueping,Gu, Zhouhang,Wang, Qian,Ye, Fei,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Wang, Jinyan,Zhang, Baolong,Ding, Bo,Wang, Guoliang,Zhou, Xueping. 2017

[4]Identification, cloning and characterization of a novel Gossypium hirsutum L. GhMYBantiV transcription factor in response to biotic and abiotic stresses. Li Fei,Chen Xiaoyan,He Xiaohong,Tang Ming,Hong Kun,Yang Zhengting,Yi Yin,Liu Zhanji,Fu Mingchuan. 2017

[5]Regional association analysis-based fine mapping of three clustered QTL for verticillium wilt resistance in cotton (G. hirsutum. L). Yunlei Zhao,Wang, Hongmei,Hongmei Wang,Wei Chen,Pei Zhao,Haiyan Gong,Xiaohui Sang,Yanli Cui. 2017

[6]Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro. Li, Zhi-Fang,Wang, Ling-Fei,Feng, Zi-Li,Zhao, Li-Hong,Shi, Yong-Qiang,Zhu, He-Qin.

[7]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[8]Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Li, Tinggang,Ma, Xuefeng,Li, Nanyang,Zhou, Lei,Gui, Yuejing,Bao, Yuming,Chen, Jieyin,Dai, Xiaofeng,Liu, Zheng,Han, Huanyong. 2017

[9]Genomic, evolutionary and expression profile analysis of Hsp70 superfamily in A and D genome of cotton (Gossypium spp.) under the challenge of Verticillium dahliae. Xiao, Songhua,Yu, Jingzhong,Yu, Deyue,Xiao, Songhua,Xu, Jianwen,Zhao, Jun,Liu, Jianguang,Wu, Qiaojuan. 2017

[10]Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level. Wang, Keru,Li, Shaokun,Bai, Junhua,Chen, Bing,Wang, Keru,Li, Shaokun,Bai, Junhua,Xiao, Chunhua,Lai, Junchen,Wang, Jing. 2008

[11]Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. Qian Gong,Zhaoen Yang,Li, Fuguang,Xiaoqian Wang,Hamama Islam Butt,Eryong Chen,Shoupu He,Chaojun Zhang,Xueyan Zhang,Fuguang Li. 2017

[12]Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. Jinfa Zhang,Jiwen Yu,Wenfeng Pei,Xingli Li,Joseph Said,Mingzhou Song,Soum Sanogo. 2015

[13]The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis. Chen, Jieyin,Li, Nanyang,Ma, Xuefeng,Zhang, Dandan,Li, Tinggang,Dai, Xiaofeng,Gupta, Vijai K.. 2017

[14]Estimating Severity Level of Cotton Infected Verticillium Wilt Based on Spectral Indices of TM Image. Chen, Bing,Wang, Keru,Li, Shaokun,Xiao, Chunhua,Chen, Jianglu,Jin, Xiulinag,Wang, Keru,Li, Shaokun,Chen, Bing.

[15]SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. Kud, Joanna,Niu, Xiangli,Kuhl, Joseph C.,Xiao, Fangming,Huang, Weizao,Liu, Yongsheng,Miao, Min,Niu, Xiangli,Liu, Yongsheng,Ouyang, Bo,Zhang, Junhong,Ye, Zhibiao. 2013

[16]The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Zhang, Lina,Zhang, Lichao,Xia, Chuan,Zhao, Guangyao,Jia, Jizeng,Kong, Xiuying. 2016

[17]Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. Su, Hongyan,Han, Liya,Zhang, Shizhong,Yin, Yanlei,Zhu, Dongzi.

[18]Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Tang, G. Y.,Xu, P. L.,Shan, L.,Shao, F. X.,Liu, Z. J..

[19]Zea mays NAC transcription factor family members: their genomic characteristics and relationship with drought stress. Li, Liang,Ma, Yiwen,Li, Liang,Ma, Yiwen,Zhang, Shihuang,Hao, Zhuanfang,Li, Xinhai. 2015

[20]Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Lu, Min,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu,Lu, Min.

作者其他论文 更多>>