Leaf Volatile Compounds and Associated Gene Expression during Short-Term Nitrogen Deficient Treatments in Cucumis Seedlings

文献类型: 外文期刊

第一作者: Deng, Jie

作者: Deng, Jie;Yu, Hong-Jun;Li, Yun-Yun;Zhang, Xiao-Meng;Liu, Peng;Li, Qiang;Jiang, Wei-Jie;Jiang, Wei-Jie

作者机构:

关键词: nitrogen deficiency;cucumber;leaf volatile;aldehyde;LOX-HPL pathways

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2016 年 17 卷 11 期

页码:

收录情况: SCI

摘要: Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E, Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E, Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber.

分类号:

  • 相关文献

[1]RNA-Seq-Based Transcriptome Profiling of Early Nitrogen Deficiency Response in Cucumber Seedlings Provides New Insight into the Putative Nitrogen Regulatory Network. Zhao, Wenchao,Yang, Xueyong,Yu, Hongjun,Jiang, Weijie,Sun, Na,Liu, Xiaoran,Liu, Xiaolin,Zhang, Xiaomeng,Wang, Yan,Gu, Xingfang,Zhao, Wenchao.

[2]Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Zhang, Xue,Yu, Hong Jun,Zhang, Xiao Meng,Yang, Xue Yong,Li, Qiang,Jiang, Wei Jie,Jiang, Wei Jie,Zhao, Wen Chao.

[3]Synthesis and Characterization of Chrysanthemic Acid Esters. Ding, Qingwei,Zhang, Mingang,Li, Yonghong.

[4]Characterization of the Aldehydes and Their Transformations Induced by UV Irradiation and Air Exposure of White Guanxi Honey Pummelo (Citrus Grandis (L.) Osbeck) Essential Oil. Li, Li Jun,Hong, Peng,Chen, Feng,Sun, Hao,Yang, Yuan Fan,Yu, Xiang,Huang, Gao Ling,Ni, Hui,Li, Li Jun,Yang, Yuan Fan,Huang, Gao Ling,Ni, Hui,Li, Li Jun,Yang, Yuan Fan,Huang, Gao Ling,Ni, Hui,Chen, Feng,Wu, Li Ming.

[5]Water stress induces in pear leaves the rise of betaine level that is associated with drought tolerance in pear. Gao, XP,Yan, JY,Liu, EK,Shen, YY,Lu, YF,Zhang, DP.

[6]Regulatory mechanisms of oxidative species and phytohormones in marine microalgae Isochrysis zhangjiangensis under nitrogen deficiency. Wu, Shuang,Meng, Yingying,Cao, Xupeng,Xue, Song,Wu, Shuang. 2016

[7]Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deficiency. Chen Hua-min,Tian Fang,He Chen-Yang,Bi Yong-Mei,Steven, Rothstein J.,Steven, Rothstein J.,Jan, Leach E.. 2015

[8]Carbon dioxide assimilation and photosynthetic electron transport of tea leaves under nitrogen deficiency. Lin, Zheng-he,Zhong, Qiu-sheng,Chen, Chang-song,Ruan, Qi-chun,Chen, Zhi-hui,You, Xiao-mei. 2016

[9]Increasing in ROS levels and callose deposition in peduncle vascular bundles of wheat (Triticum aestivum L.) grown under nitrogen deficiency. Kong, Lingan,Wang, Fahong,Si, Jisheng,Feng, Bo,Zhang, Bin,Li, Shengdong,Wang, Zheng,Wang, Fahong. 2013

[10]Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in Upland cotton. Shang, Lianguang,Cai, Shihu,Ma, Lingling,Wang, Yumei,Abduweli, Abdugheni,Wang, Meiyan,Wang, Xiaocui,Liang, Qingzhi,Hua, Jinping,Wang, Yumei.

[11]Physiological and metabolic profiles of common reed provide insights into plant adaptation to low nitrogen conditions. Chu, Xiaodan,Yang, Lan,Wang, Shuang,Yang, Haijun,Liu, Jun.

[12]The optimal leaf area index for cucumber photosynthesis and production in plastic greenhouse. Xiaolei, S,Zhifeng, W. 2004

[13]Managing Meloidogyne incognita and Bemisia tabaci with thiacloprid in cucumber crops in China. Dong, Sa,Qiao, Kang,Xia, Xiaoming,Wang, Kaiyun,Zhu, Yukun,Wang, Hongyan. 2014

[14]Staurosporine from the endophytic Streptomyces sp strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber. Xiao, Lie,Zhang, Bo,Zhang, Xiaoping,Li, Xiaolin,Zheng, Linyong,Gan, Bingcheng,Huang, Pei,Wang, Qian,Liu, Miaomiao,Bolla, Krishna,Liu, Xueting,Zhang, Lixin,Huang, Pei,Wang, Qian,Liu, Xueting. 2014

[15]Vegetable production in solar plastic greenhouses: Past, present and future in Shandong Province. Sun, X.,Zhang, W.,Wang, Z.,Cao, Q.. 2007

[16]The Differential Expression of Resistant Genes Related to Cucumber Scab Displayed by cDNA-AFLP. Sun Xun,Li Xixiang,Qiu Yang,Shen Di,Song Jiangping,Sun Xun,Ren Ruixing. 2010

[17]The comparison of alternative splicing among the multiple tissues in cucumber. Sun, Ying,Song, Hongtao,Lin, Kui,Pang, Erli,Sun, Ying,Song, Hongtao,Lin, Kui,Pang, Erli,Hou, Han,Zhang, Zhonghua,Hou, Han,Hu, Jinglu. 2018

[18]Simultaneous Determination of Fluoxastrobin and Tebuconazole in Cucumber and Soil Based on Solid-Phase Extraction and LC-MS/MS Method. Wang, Weimin,Sun, Qiang,Li, Yubo,Wen, Guangyue,Fan, Jiequn,Song, Weiguo,Zhao, Zhihui,Dong, Maofeng,Dong, Maofeng. 2018

[19]Karyotyping in Melon (Cucumis melo L.) by Cross-Species Fosmid Fluorescence in situ Hybridization. Liu, C.,Liu, J.,Li, H.,Han, Y.,Jin, W.,Zhang, Z.,Huang, S.,Liu, J.. 2010

[20]Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber. Liu Li-ying,Duan Liu-sheng,Zhang Jia-chang,Zhang Xiao-lan,Zhang Zhen-xian,Ren Hua-zhong,Mi Guo-quan. 2013

作者其他论文 更多>>