Molecular cloning and characterization of a gene encoding the proline transporter protein in common bean (Phaseolus vulgaris L.)

文献类型: 外文期刊

第一作者: Chen, Jibao

作者: Chen, Jibao;Lu, Yunfeng;Cao, Yuannan;Zeng, Hui;Zhang, Zhaoyuan;Wang, Lanfen;Wang, Shumin

作者机构:

关键词: Common bean;Proline;Proline transporter;Drought stress;PvProT

期刊名称:CROP JOURNAL ( 影响因子:4.407; 五年影响因子:5.687 )

ISSN: 2095-5421

年卷期: 2016 年 4 卷 5 期

页码:

收录情况: SCI

摘要: As a typical compatible solute, proline is accumulated in plants under environmental stresses. Proline transporter (ProT) plays an important role in proline distribution between plant organs. Using a candidate gene approach, we cloned a cDNA sequence for ProT from common bean (Phaseolus vulgaris L.) and designated the gene PvProT. The deduced amino acid sequence of PvProT showed high similarity to Bet/ProT proteins from other leguminous plants, and the highest similarity was observed with mothbean (Vigna aconitifolia L.) VuProT. Relative quantification of the mRNA level of PvProT using real-time PCR analysis showed that the PvProT transcript level was higher in leaves than in stems and roots of common bean plants subjected to drought and salt stress. Under 20% (w/w) PEG-6000 treatment, drought-resistant plants expressed a higher level of PvProT transcripts than drought-sensitive plants. Although heterologous expression of PvProT in the Escherichia coli mutant mkh13 showed that PvProT exhibited uptake activities for proline and betaine, no betaine content was detected in the common bean. These findings suggest that PvProT plays an important role in the transportation of proline in common bean plants exposed to drought and salt stress. (C) 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

分类号:

  • 相关文献

[1]Cloning of the OAT gene and the correlation between its expression and drought tolerance in Phaseolus vulgaris L.. Chen Ji-bao,Cao Yuan-nan,Zhang Zhao-yuan,Wang Shu-min,Wu Jing,Wang Lan-fen. 2016

[2]Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Chen, Ji Bao,Yang, Jian Wei,Zhang, Zhao Yuan,Feng, Xiao Fan,Wang, Shu Min.

[3]Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress. Tian Qing-song,Du Jian-cai,Han Bing,Wang Shu-yan,Wu Zhi-juan,Li Xiao-quan,Han Bing. 2016

[4]MicroRNAs associated with drought response in the pulse crop common bean (Phaseolus vulgaris L.). Wu, Jing,Wang, Lanfen,Wang, Shumin. 2017

[5]Salicylic Acid Enhances Resistance to Fusarium oxysporum f. sp. phaseoli in Common Beans (Phaseolus vulgaris L.). Xue, Ren Feng,Wu, Jing,Wang, Lan Fen,Wang, Xiao Ming,Zhu, Zhen Dong,Wang, Shu Min,Xue, Ren Feng,Ge, Wei De,Blair, Matthew W.. 2014

[6]Comparisons of phaseolin type and alpha-amylase inhibitor in common bean (Phaseolus vulgaris L.) in China. Yao, Yang,Hu, Yibo,Zhu, Yingying,Gao, Yue,Ren, Guixing. 2016

[7]Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. Wu, Jing,Wang, Lanfen,Wang, Shumin,Chen, Jibao. 2016

[8]Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. Wu, Jing,Wang, Lanfen,Wang, Shumin. 2016

[9]Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. Wu, Jing,Zhu, Jifeng,Wang, Lanfen,Wang, Shumin. 2017

[10]Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Chen, Jianlin,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Wu, Xuexia,Zhu, Zongwen,Xu, Shuang,Zha, Dingshi,Yao, Xinfeng. 2016

[11]5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Xiong, Jun-Lan,Wang, Hang-Chao,Tan, Xiao-Yu,Zhang, Chun-Lei,Zhang, Chun-Lei,Naeem, Muhammad Shahbaz. 2018

[12]Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Mo, Zhaowen,Pan, Shenggang,Xiao, Feng,Tang, Yongjian,Wang, Yilei,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Mo, Zhaowen,Pan, Shenggang,Duan, Meiyang,Tian, Hua,Tang, Xiangru,Li, Wu,Fitzgerald, Timothy L.. 2015

[13]Effect of Salt Stress on Growth and Physiology in Melia azedarach Seedlings of Six Provenances. Xu, Liping,Xu, Liping,Zhang, Zihan,Yu, Fangyuan,Guo, Jie,Liu, Jianbin,Yue, Haiwang. 2018

[14]Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate-glutathione and proline metabolism in melon seedlings (Cucumis melo L.). Zhang, Y. P.,Chen, Y. Y.,Zhang, Y. P.,Xu, S.,Yang, S. J.,Chen, Y. Y..

[15]Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase. Zhang, Baige,Liu, Kaidong,Zheng, Yan,Wang, Yingxiang,Wang, Jinxiang,Liao, Hong,Zhang, Baige,Liu, Kaidong,Wang, Jinxiang. 2013

[16]Over-expressing Salicornia europaea (SeNHX1) gene in tobacco improves tolerance to salt. Yang, Xiaoling,Ji, Jing,Wang, Gang,Yang, Shaohui,Yang, Xiaoling,Zhao, Qing,Josine, Tchouopou Lontchi,Yang, Xiaoling,Yang, Xiaoling,Ji, Jing,Wang, Gang,Yang, Shaohui. 2011

[17]AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Wang, Feibing,Peng, Rihe,Li, Zhenjun,Yao, Quanhong,Kong, Weili,Wong, Gary,Fu, Lifeng.

[18]Exogenous Nitric Oxide Pretreatment Enhances Chilling Tolerance of Anthurium. Liang, Lijian,Deng, Yanming,Sun, Xiaobo,Jia, Xinping,Su, Jiale. 2018

[19]Host diapause status and host diets augmented with cryoprotectants enhance cold hardiness in the parasitoid Nasonia vitripennis. Li, Yuyan,Zhang, Lisheng,Chen, Hongyin,Li, Yuyan,Zhang, Lisheng,Chen, Hongyin,Li, Yuyan,Zhang, Qirui,Denlinger, David L.,Li, Yuyan,Zhang, Qirui,Denlinger, David L.,Li, Yuyan,Zhang, Qirui,Denlinger, David L..

[20]Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Islam, Faisal,Ali, Basharat,Wang, Jian,Farooq, Muhammad A.,Gill, Rafaqat A.,Zhou, Weijun,Islam, Faisal,Ali, Basharat,Wang, Jian,Farooq, Muhammad A.,Gill, Rafaqat A.,Zhou, Weijun,Ali, Shafaqat,Wang, Danying.

作者其他论文 更多>>