Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning
文献类型: 外文期刊
第一作者: Xie, Feng
作者: Xie, Feng;Xie, Feng;Guo, Zhengwei;Li, Tao;Feng, Qingchun;Guo, Zhengwei;Zhao, Chunjiang;Li, Tao
作者机构:
关键词: multi-arm harvesting robots; target planning; multiple constraints; deep reinforcement learning
期刊名称:HORTICULTURAE ( 影响因子:3.0; 五年影响因子:3.2 )
ISSN:
年卷期: 2025 年 11 卷 1 期
页码:
收录情况: SCI
摘要: Global fruit production costs are increasing amid intensified labor shortages, driving heightened interest in robotic harvesting technologies. Although multi-arm coordination in harvesting robots is considered a highly promising solution to this issue, it introduces technical challenges in achieving effective coordination. These challenges include mutual interference among multi-arm mechanical structures, task allocation across multiple arms, and dynamic operating conditions. This imposes higher demands on task coordination for multi-arm harvesting robots, requiring collision-free collaboration, optimization of task sequences, and dynamic re-planning. In this work, we propose a framework that models the task planning problem of multi-arm operation as a Markov game. First, considering multi-arm cooperative movement and picking sequence optimization, we employ a two-agent Markov game framework to model the multi-arm harvesting robot task planning problem. Second, we introduce a self-attention mechanism and a centralized training and execution strategy in the design and training of our deep reinforcement learning (DRL) model, thereby enhancing the model's adaptability in dynamic and uncertain environments and improving decision accuracy. Finally, we conduct extensive numerical simulations in static environments; when the harvesting targets are set to 25 and 50, the execution time is reduced by 10.7% and 3.1%, respectively, compared to traditional methods. Additionally, in dynamic environments, both operational efficiency and robustness are superior to traditional approaches. The results underscore the potential of our approach to revolutionize multi-arm harvesting robotics by providing a more adaptive and efficient task planning solution. We will research improving the positioning accuracy of fruits in the future, which will make it possible to apply this framework to real robots.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Adaptive visual servoing control for uncalibrated robot manipulator with uncertain dead-zone constraint
作者:Ma, YA-Jun;Ma, YA-Jun;Zhao, Hui;Li, Tao
关键词:Adaptive control; robot manipulator; visual servoing; unknown dead-zone inputs; projecting algorithm
-
Quantifying the Photosynthetic Quantum Yield of Ultraviolet-A1 Radiation
作者:Sun, Xuguang;Zhang, Yuqi;Li, Tao;Sun, Xuguang;Kaiser, Elias;Marcelis, Leo F. M.
关键词:chlorophyll fluorescence; photoinhibition; photosynthesis; photosynthetic quantum yield; UV-A1
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Leaf Photosynthetic and Photoprotective Acclimation in the Ultraviolet-A1 and Blue Light Regions Follow a Continuous, Shallow Gradient
作者:Sun, Xuguang;Li, Tao;Sun, Xuguang;Kaiser, Elias;Marcelis, Leo F. M.
关键词:acclimation; dynamic photosynthesis; photoprotection; steady-state photosynthesis; tomato; UV-A1