Pathogen resistance was negatively regulated by the NAC transcription factor ScATAF1 in sugarcane

文献类型: 外文期刊

第一作者: Wang, Hengbo

作者: Wang, Hengbo;Qin, Liqian;Feng, Chunyan;Wu, Mingxing;Zhong, Hui;Liu, Junhong;Que, Youxiong;Wang, Hengbo;Wu, Qibin;Que, Youxiong

作者机构:

关键词: Sugarcane; NAC transcription factor; ATAF members; Smut disease; Pathogen defense

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:6.1; 五年影响因子:6.2 )

ISSN: 0981-9428

年卷期: 2024 年 213 卷

页码:

收录情况: SCI

摘要: The NAC (NAM, ATAF, and CUC) is one of the largest transcription factor gene families in plants. In this study, 180, 141, and 131 NAC family members were identified from Saccharum complex, including S. officinarum, S. spontaneum, and Erianthus rufipilus. The Ka/Ks ratio of ATAF subfamily was all less than 1. Besides, 52 ATAF members from 12 representative plants were divided into three clades and there was only a significant expansion in maize. Surprisingly, ABA and JA cis-elements were abundant in hormonal response factor, followed by transcriptional regulator and abiotic stressor. The ATAF subfamily was differentially expressed in various tissues, under low temperature and smut pathogen treatments. Further, the ScATAF1 gene, with high expression in leaves, stem epidermis, and buds, was isolated. The encoded protein, lack of self-activation activity, was situated in the cell nucleus. Moreover, SA and JA stresses down-regulated the expression of this gene, while ABA, NaCl, and 4 degrees C treatments led to its up-regulation. Interestingly, its expression in the smut susceptible sugarcane cultivars was much higher than the smut resistant ones. Notably, the colors presented slight brown in tobacco transiently overexpressing ScATAF1 at 1 d after DAB staining, while the symptoms were more obvious at 3 d after inoculation with Ralstonia solanacearum, with ROS, JA, and SA signaling pathway genes significantly upregulated. We thus speculated ScATAF1 gene could negatively mediate hypersensitive reactions and produce ROS by JA and SA signaling pathways. These findings lay the groundwork for in-depth investigation on the biological roles of ATAF subfamily in sugarcane.

分类号:

  • 相关文献
作者其他论文 更多>>