An effective unsupervised domain adaptation for in-field potato disease recognition
文献类型: 外文期刊
第一作者: Gao, Xueze
作者: Gao, Xueze;Feng, Quan;Yang, Sen;Wang, Shuzhi;Zhang, Jianhua;Zhang, Jianhua
作者机构:
关键词: Field environment; Domain shift; Subdomain; Multi-representation; Light variation; Disease progression
期刊名称:BIOSYSTEMS ENGINEERING ( 影响因子:5.3; 五年影响因子:5.9 )
ISSN: 1537-5110
年卷期: 2024 年 247 卷
页码:
收录情况: SCI
摘要: Accurate disease recognition through computer vision is crucial for the intelligent management of potato production. Popular data-driven classification methods face challenges including limited labelled data and poor model portability. Unsupervised Domain Adaptation (UDA) addresses these challenges with a novel learning strategy. However, the complex field environment introduces a significant domain shift problem due to varying conditions. Existing UDA methods usually concentrate on aligning global data distribution and employ a single structure for disease feature extraction, thereby limiting their efficacy in true field environment. To tackle this challenge of potato disease recognition, the Multi-Representation Adaptive Network (MRSAN) based on subdomain alignment is presented. MRSAN effectively aligns feature distributions across diverse data by minimising distribution differences among relevant subdomains. Simultaneously, the multi-representation extraction method captures finer details from various perspectives in the disease images. The combination of these two approaches efficiently mitigates the adverse effects caused by various interference factors in field environment. Based on the acquisition conditions of light variation and disease progression, two field potato disease image datasets are created, containing five and six kinds of potato leaf disease, respectively. Extensive transfer experiments are conducted on the two datasets. MRSAN achieves average classification accuracies of 87.03% and 80.06% on the datasets for the corresponding transfer tasks, outperforming the other compared methods. This not only validates the effectiveness of MRSAN but also demonstrates its robust ability to generalise across changes in regard to light variation and disease progression.
分类号:
- 相关文献
作者其他论文 更多>>
-
Rhizosphere and phyllosphere microbial communities of male and female plants of Morus macroura
作者:Liu, Quanwei;Xu, Danping;Chen, Guantao;Zhang, Jianhua;Wang, Xie;Ali, Habib
关键词:Morus macroura; Dioecious plants; Phyllosphere; Rhizosphere; Microbial communities
-
Fluid streaming and microparticles manipulating based on piezoelectric arrays excitation with various switching frequencies and duty cycles
作者:Zhang, Fan;Wei, Bin;Zhang, Fan;Wei, Bin;Zhang, Bing;Ma, Cong;Zhang, Jianhua;Wei, Bin
关键词:Acoustic; streaming; duty cycle; piezoelectrics; tweezers
-
Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning
作者:Li, Weinan;Peng, Jun;Zhang, Jianhua;Zhang, Mingjun;Yang, Zhaoen;Peng, Jun;Chai, Mao;Fan, Jingchao;Zhang, Jianhua;Li, Weinan;Lan, Yubin
关键词:
-
Integrating demographic characteristics and consumption rate for the management of Ectropis grisescens on two tea cultivars with different economic thresholds during the harvest and post-harvest seasons
作者:Zhou, Yu;Zhou, Yu;Chen, Li-Lin;Liu, Qi;Chi, Hsin;Yang, Sen;Qi, Lin-Lin;Liu, Shi-Jie;Zhang, Teng;Chi, Hsin;Lin, Zi-Xi
关键词:age-stage, two-sex life table; leaf consumption; computer simulation; tea geometrid; season-specific economic threshold
-
Auxin-Producing Pseudomonas Recruited by Root Flavonoids Increases Rice Rhizosheath Formation through the Bacterial Histidine Kinase Under Soil Drying
作者:Xu, Feiyun;Wang, Yongsen;Yang, Jinyong;Zhang, Xue;Tong, Lu;Bai, Chuqi;Chen, Shu;Sun, Leyun;Du, Chongxuan;Fang, Ju;Gengli, Jiahong;Liu, Jianping;Xu, Weifeng;Zhang, Xue;Wang, Ke;Ding, Fan;Xu, Mengqiang;Li, Liang;Zhang, Qian;Wang, Zhengrui;Pang, Jiayin;Yu, Xin;Zhu, Yiyong;Zhang-Zheng, Huanyuan;Zhang-Zheng, Huanyuan;Zhang, Jianhua
关键词:polyploidy; pseudomonas; rhizosheath formation; rice; soil drying
-
EMSAM: enhanced multi-scale segment anything model for leaf disease segmentation
作者:Li, Junlong;Feng, Quan;Yang, Sen;Zhang, Jianhua;Zhang, Jianhua
关键词:segment anything model; parameter efficient fine-tuning; adapter tuning; leaf disease segmentation; multi-task learning
-
Nutritional quality assessment of mulberry leaves from different varieties as an alternative feed in ruminant nutrition
作者:Liu, Quanwei;Zhuo, Zhihang;Xu, Danping;Zhang, Jianhua;Chen, Guantao;Wang, Xie;Ali, Habib
关键词:Mulberry leaves; Feed quality; Mineral element; Amino acid; Comprehensive evaluation