Diagnosis of Custard Apple Disease Based on Adaptive Information Entropy Data Augmentation and Multiscale Region Aggregation Interactive Visual Transformers
文献类型: 外文期刊
第一作者: Cui, Kunpeng
作者: Cui, Kunpeng;Huang, Jianbo;Dai, Guowei;Fan, Jingchao;Dewi, Christine;Dewi, Christine
作者机构:
关键词: plant disease; convolutional neural network; adaptive data augmentation; feature fusion; visual transformer
期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )
ISSN:
年卷期: 2024 年 14 卷 11 期
页码:
收录情况: SCI
摘要: Accurate diagnosis of plant diseases is crucial for crop health. This study introduces the EDA-ViT model, a Vision Transformer (ViT)-based approach that integrates adaptive entropy-based data augmentation for diagnosing custard apple (Annona squamosa) diseases. Traditional models like convolutional neural network and ViT face challenges with local feature extraction and large dataset requirements. EDA-ViT overcomes these by using a multi-scale weighted feature aggregation and a feature interaction module, enhancing both local and global feature extraction. The adaptive data augmentation method refines the training process, boosting accuracy and robustness. With a dataset of 8226 images, EDA-ViT achieved a classification accuracy of 96.58%, an F1 score of 96.10%, and a Matthews Correlation Coefficient (MCC) of 92.24%, outperforming other models. The inclusion of the Deformable Multi-head Self-Attention (DMSA) mechanism further enhanced feature capture. Ablation studies revealed that the adaptive augmentation contributed to a 0.56% accuracy improvement and a 0.34% increase in MCC. In summary, EDA-ViT presents an innovative solution for custard apple disease diagnosis, with potential applications in broader agricultural disease detection, ultimately aiding precision agriculture and crop health management.
分类号:
- 相关文献
作者其他论文 更多>>
-
Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning
作者:Li, Weinan;Peng, Jun;Zhang, Jianhua;Zhang, Mingjun;Yang, Zhaoen;Peng, Jun;Chai, Mao;Fan, Jingchao;Zhang, Jianhua;Li, Weinan;Lan, Yubin
关键词:
-
Chat-rgie: precision extraction of rice germplasm data using large language models and prompt engineering
作者:Wei, Yijin;Fan, Jingchao;Wei, Yijin;Fan, Jingchao
关键词:Data extraction; Large language model (LLM); Rice germplasm; Agriculture
-
Extracting Fruit Disease Knowledge from Research Papers Based on Large Language Models and Prompt Engineering
作者:Fei, Yunqiao;Fan, Jingchao;Fei, Yunqiao;Fei, Yunqiao;Fan, Jingchao;Zhou, Guomin;Zhou, Guomin
关键词:research papers; knowledge extraction; large language models; prompt engineering; fruit tree diseases
-
TAL-SRX: an intelligent typing evaluation method for KASP primers based on multi-model fusion
作者:Chen, Xiaojing;Fan, Jingchao;Yan, Shen;Zhou, Guomin;Zhang, Jianhua;Chen, Xiaojing;Fan, Jingchao;Huang, Longyu;Zhou, Guomin;Zhang, Jianhua;Huang, Longyu;Huang, Longyu
关键词:KASP fractal evaluation; multi-model fusion; stacking integration; deep learning; hyperparameter tuning
-
KASP-IEva: an intelligent typing evaluation model for KASP primers
作者:Chen, Xiaojing;Fan, Jingchao;Yan, Shen;Zhang, Jianhua;Chen, Xiaojing;Huang, Longyu;Fan, Jingchao;Zhou, Guomin;Zhang, Jianhua;Huang, Longyu;Zhou, Guomin;Huang, Longyu
关键词:intelligent evaluation; KASP marker; decision tree; genotyping; cotton; molecular marker-assisted selection
-
DFN-PSAN: Multi-level deep information feature fusion extraction network for interpretable plant disease classification
作者:Dai, Guowei;Fan, Jingchao;Tian, Zhimin;Sunil, C. K.;Dewi, Christine;Fan, Jingchao
关键词:Deep learning; Image processing; Feature fusion; Multilevel features; Pixel attention; Disease classification
-
Intelligent vineyard blade density measurement method incorporating a lightweight vision transformer
作者:Ke, Shan;Pan, Hui;Dai, Guowei;Dai, Guowei;Jin, Bowen
关键词:Deep learning; Image processing; Vision transformer; Fusion data augmentation; Leaf density measurement