Ocean acidification alters shellfish-algae nutritional value and delivery

文献类型: 外文期刊

第一作者: Jia, Ruolan

作者: Jia, Ruolan;Yin, Minghao;Chen, Chengzhuang;Qu, Chunfeng;Liu, Ling;Li, Ping;Li, Zhi-Hua;Feng, Xue

作者机构:

关键词: Fatty acids; Microalgae; Nutrient transfer; Ocean acidification; Oysters

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:9.8; 五年影响因子:9.6 )

ISSN: 0048-9697

年卷期: 2024 年 918 卷

页码:

收录情况: SCI

摘要: The ecological effects of climate change and ocean acidification (OA) have been extensively studied. Various microalgae are ecologically important in the overall pelagic food web as key contributors to oceanic primary productivity. Additionally, no organism exists in isolation in a complex environment, and shifts in food quality may lead to indirect OA effects on consumers. This study aims to investigate the potential effects of OA on algal trophic composition and subsequent bivalve growth. Here, the growth and nutrient fractions of Chlorella sp., Phaeodactylum tricornutum and Chaetocetos muelleri were used to synthesize and assess the impact of OA on primary productivity. Total protein content, total phenolic compounds, and amino acid (AA) and fatty acid (FA) content were evaluated as nutritional indicators. The results demonstrated that the three microalgae responded positively to OA in the future environment, significantly enhancing growth performance and nutritional value as a food source. Additionally, certain macromolecular fractions found in consumers are closely linked to their dietary sources, such as phenylalanine, C14:0, C16:0, C16:1, C20:1n9, C18:0, and C18:3n. Our findings illustrate that OA affects a wide range of crucial primary producers in the oceans, which can disrupt nutrient delivery and have profound impacts on the entire marine ecosystem and human food health.

分类号:

  • 相关文献
作者其他论文 更多>>