Machine learning-based prediction of surface structure induced by laser surface texturing
文献类型: 外文期刊
第一作者: Li, Yongzhe
作者: Li, Yongzhe;Fu, Jiajun;Zhao, Runhan;Liu, Chao;Wang, Qinghua;Fu, Jiajun;Zhao, Runhan;Liu, Chao;Wang, Qinghua;Wang, Huixin;Wang, Huixin
作者机构:
关键词: Laser texturing; Surface structure; Machine learning; Roughness prediction; Artificial neural intelligence
期刊名称:COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS ( 影响因子:5.4; 五年影响因子:5.2 )
ISSN: 0927-7757
年卷期: 2025 年 726 卷
页码:
收录情况: SCI
摘要: Surface roughness is a key indicator for the evaluation of laser surface functionalization since it can greatly affect the surface functions including surface wettability, friction and wear properties, optical properties and etc. However, predicting the surface roughness of laser-ablated surfaces for specific laser processing parameters presents a major challenge due to the instantaneity and inherent complexity of laser-material interactions. Traditionally, achieving a desired surface roughness necessitates designing and experimentally testing a vast number of laser parameter combinations, which can be quite time and resource consuming. Machine learning model is capable to extract the potential relations among the raw data based on the data itself and utilizes this for prediction and analysis of surface roughness, which is quite different from the physical models that directly establishes the relationship between the laser processing parameter and surface roughness. This work employs two different models, e.g., LASSO (Least absolute shrinkage and selection operator) and ANN (Artificial Neural Network), for prediction and analysis of the surface roughness on the laser ablated zirconia ceramics surface. The experimental results demonstrate that the prediction results for the roughness values (Sa, Sz, Sq) using the ANN model is significantly better that those using the LASSO model, indicating the non-linear relationship between the laser processing parameters and surface roughness. On the validation set, the ANN model achieved RMSE values of 2.757 (Sa), 17.478 (Sz), and 2.854 (Sq), with corresponding R2 values of 0.887, 0.852, and 0.910. Notably, the model maintained strong performance even for laser processing parameters beyond the pre-set process window, exhibiting prediction errors around only 10 %. In addition, this work confirms that the formation of regular periodic surface micro/nanostructures is critically dependent on specific laser parameter combinations, particularly the requirement for high laser power to be coupled with high scanning speed. The superior generalization ability of the developed can provide key guidance for the design and optimization of laser processing parameters utilized for the laser surface functionalization of different materials.
分类号:
- 相关文献
作者其他论文 更多>>
-
Identification of two effective sex-specific DNA markers in silver arowana ( Osteoglossum bicirrhosum)
作者:Liu, Yi;Liu, Chao;Yang, Yexin;Wang, Yuanyuan;Mu, Xidong;Sun, Jinhui;Yang, Yexin
关键词:Osteoglossidae; Silver arowana; Sex-specific markers; ZW sex-determination
-
Mechanisms of Baicalin Alleviates Intestinal Inflammation: Role of M1 Macrophage Polarization and Lactobacillus amylovorus
作者:Zhang, Shunfen;Zhong, Ruqing;Li, Kai;Wang, Huixin;Xu, Ye;Liu, Dadan;Chen, Liang;Zhang, Hongfu;Zhang, Shunfen;Lv, Huiyuan;Ma, Qiugang;Zhou, Miao
关键词:baicalin;
E. coli ; intestinal inflammation;Lactobacillus amylovorus ; macrophages polarization; TLR4 -
Integrated omics reveal the mechanisms underlying softening and aroma changes in pear during postharvest storage and the role of melatonin
作者:Xu, Jiayu;Zhang, Ying;Huo, Hongliang;Qi, Dan;Dong, Xingguang;Tian, Luming;Liu, Chao;Cao, Yufen
关键词:Zaoshu Shanli; Whole transcriptome; Firmness; Transmission electron microscopy; Ethylene; Metabolite; CeRNA
-
Transcriptome sequencing elucidates the adaptation mechanisms of Pyrus betulifolia to cold and drought conditions
作者:Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong;Wang, Qinghua;Liang, Zhenxu;Sun, Mingde;Liu, Jun;Jin, Wanmei;Liu, Songzhong
关键词:
Pyrus betulifolia ; Cold; Drought; Transcriptome -
Rapid detection of feline parvovirus using RAA-CRISPR/Cas12a-based lateral flow strip and fluorescence
作者:Chen, Han;Guo, Jie;Meng, Xiangshu;Yao, Mengfan;He, Longbin;Nie, Xiaoxuan;Xu, Han;Liu, Chao;Sun, Jian;Zhang, Jianlou;Wang, Jianke;Zhang, Hailing;Sun, Jian;Wang, Fei;Sun, Yuelong;Jiang, Zhong;He, Yanliang
关键词:CRISPR/Cas12a; detection; feline; parvovirus; RAA; lateral flow strip
-
Identification and Evaluation of Flesh Texture of Crisp Pear Fruit Based on Penetration Test Using Texture Analyzer
作者:Mou, Yulu;Dong, Xingguang;Zhang, Ying;Tian, Luming;Huo, Hongliang;Qi, Dan;Xu, Jiayu;Liu, Chao;Yin, Chen;Yang, Xiang;Li, Niman
关键词:pear; germplasm resources; flesh texture; sensory evaluation; puncture method
-
Reference genome provide insights into sex determination of silver aworana (Osteoglossum bicirrhosum)
作者:Liu, Yi;Yang, Yexin;Wang, Yuanyuan;Liu, Chao;Ouyang, Guochang;Xu, Meng;Mu, Xidong;Bian, Chao;Shi, Qiong;Ma, Ka Yan;Ouyang, Guochang;Sun, Jinhui;Shao, Changwei;Chen, Jiehu;Yang, Yexin
关键词:Silver arowana; Whole-genome sequencing and assembly; Chromosome interaction; Transcriptome; Female-specific region;
foxl2