Dilemma between yield and quality: Multigenerational effect of elevated CO2 and nitrogen supply on wheat cultivars
文献类型: 外文期刊
第一作者: Wang, Xizi
作者: Wang, Xizi;Liang, Kehao;Liu, Fulai;Yang, Xin;Li, Shenglan;Li, Xiangnan;Liu, Fulai
作者机构:
关键词: biomass; CO2 enrichment; minerals; multiple generations; nitrogen supply; wheat
期刊名称:JOURNAL OF AGRONOMY AND CROP SCIENCE ( 影响因子:3.5; 五年影响因子:4.2 )
ISSN: 0931-2250
年卷期: 2023 年
页码:
收录情况: SCI
摘要: Studying the long-term effect of elevated atmospheric CO2 concentration (e[CO2]) on wheat (Triticum aestivum L.) over multiple generations has received increasing attention. Here, five wheat cultivars were grown under ambient CO2 concentration (a[CO2], 400 ppm) and e[CO2] (800 ppm), respectively, for three consecutive generations (G1 to G3) under two nitrogen (N) levels (1N and 2N). Compared to plants grown under a[CO2], e[CO2] increased shoot biomass and grain yield (GY) over three generations and the enhancement was greater in G3 than in G1. However, plant N concentration was lowered by e[CO2] and the reduction was not mitigated by higher N supply. The carbon (C) concentration significantly increased in leaf and stem but decreased in grain, indicating an inhibited C translocation to grain under e[CO2]. Most importantly, these negative impacts were exacerbated in G3. Concentrations of mineral nutrients in grain were significantly lowered by e[CO2] with larger reduction in G3 than in G1 in some micronutrients such as Zn, Cu and Fe. These findings suggest that long-term exposure to e[CO2] sustained the positive effects on plant growth and production but aggravated the reduction of grain quality over multiple generations. Among the five cultivars, 325Jimai showed the greatest increase in shoot biomass and GY, and a greater sink capacity compared with the other cultivars, indicating its potential for future breeding strategies.
分类号:
- 相关文献
作者其他论文 更多>>
-
Polystyrene nanoplastics in soil impair drought priming-induced low temperature tolerance in wheat
作者:Wang, Ling;Sui, Yuting;Zhang, Peng;Li, Shuxin;Liu, Tianhao;Li, Xiangnan;Wang, Ling;Li, Shuxin;Li, Xiangnan;Wang, Zongshuai
关键词:Nanoplastics; Cold stress; Carbohydrate metabolism; Chloroplasts; Stress memory; Triticum aestivum
-
Maize actin depolymerizing factor 1 ( ZmADF1 ) negatively regulates pollen development
作者:Lv, Guihua;Wu, Zhengxin;Li, Xiangnan;Wang, Tingzheng;Chen, Jianjian;Liu, Lei;Zhang, Yuanyuan;Li, Yunfeng;Zhang, Yahui;Ren, Wenchuang
关键词:Actin depolymerizing factor 1; Overexpression; Gene editing; Maize; Pollen development
-
The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat
作者:Lyu, Jinyang;Sun, Na;Yang, Fan;Li, Xuepeng;Mu, Junyi;Zhou, Runxiang;Zheng, Guolan;Yang, Xin;Zhang, Chenxuan;Han, Chao;Xia, Guang-Min;Fan, Min;Bai, Ming-Yi;Wang, Dongzhi;Xiao, Jun;Li, Genying;Xiao, Jun;Xiao, Jun
关键词:wheat grain length; brassinosteroid; sugar; TabHLH489; SnRK1
-
GPCR-MAPK signaling pathways underpin fitness trade- offs in whitefly
作者:Fu, Buli;Liang, Jinjin;Hu, Jinyu;Du, Tianhua;He, Chao;Wei, Xuegao;Gong, Peipan;Yang, Jing;Liu, Shaonan;Huang, Mingjiao;Yang, Xin;Zhang, Youjun;Fu, Buli;Hu, Jinyu;Liu, Kui;Du, Tianhua;Wei, Xuegao;Gui, Lianyou;Zhang, Youjun;Tan, Qimei;He, Chao;Liu, Shaonan;Huang, Mingjiao;Zhang, Youjun;Wei, Xuegao;Nauen, Ralf;Bass, Chris
关键词:adaptive evolution; fitness trade- offs; GPCR; MAPK; P450
-
Dual mutations in the whitefly nicotinic acetylcholine receptor β1 subunit confer target-site resistance to multiple neonicotinoid insecticides
作者:Yin, Cheng;Liu, Shao-Nan;Du, Tian-Hua;Gong, Pei-Pan;Wei, Xue-Gao;Yang, Jing;Huang, Ming-Jiao;Fu, Bu-Li;Liang, Jin-Jin;Xue, Hu;Hu, Jin-Yu;Ji, Yao;He, Chao;Du, He;Wang, Chao;Zhang, Rong;Lu, Han-Tang;Xie, Wen;Yang, Xin;Zhang, You-Jun;Yin, Cheng;Gui, Lian-You;OReilly, Andrias O.;Zhang, Cheng-Jia;Tan, Qi-Mei;Chu, Dong;Zhou, Xu-Guo;Nauen, Ralf;Bass, Chris
关键词:
-
Mechanisms Underlying the Differential Sensitivity to Mesotrione in Sweet Corn
作者:Lv, Guihua;Li, Xiangnan;Wang, Tingzhen;Wu, Zhenxing;Fang, Ruiqiu;Chen, Jianjian
关键词:mesotrione; oxidative balance; photosynthesis; sweet corn
-
Glutathione S-transferase directly metabolizes imidacloprid in the whitefly, Bemisia tabaci
作者:Zhang, Rong;Hu, Jinyu;Yang, Fengbo;Wei, Xuegao;Wang, Chao;Su, Qi;Zhang, Rong;Yang, Jing;Hu, Jinyu;Liang, Jinjin;Xue, Hu;Wei, Xuegao;Fu, Buli;Huang, Mingjiao;Du, He;Wang, Chao;Yang, Xin;Zhang, Youjun;Xue, Hu;Fu, Buli
关键词:Bemisia tabaci; Imidacloprid; Glutathione S-transferase; Metabolism