VP2 mediates the release of the feline calicivirus RNA genome by puncturing the endosome membrane of infected cells

文献类型: 外文期刊

第一作者: Sun, Weiyao

作者: Sun, Weiyao;Wang, Ming;Shi, Zhibin;Wang, Pengfei;Wang, Jinhui;Du, Bingchen;Wang, Shida;Sun, Zhenzhao;Liu, Zaisi;Wei, Lili;Yang, Decheng;He, Xijun;Wang, Jingfei

作者机构:

关键词: genome release; VP2 protein; calicivirus; membrane penetration

期刊名称:JOURNAL OF VIROLOGY ( 影响因子:5.4; 五年影响因子:4.9 )

ISSN: 0022-538X

年卷期: 2024 年 98 卷 5 期

页码:

收录情况: SCI

摘要: Feline calicivirus (FCV) is one of the few members of the Caliciviridae family that grows well in cell lines and, therefore, serves as a surrogate to study the biology of other viruses in the family. Conley et al. (14) demonstrated that upon the receptor engagement to the capsid, FCV VP2 forms a portal-like assembly, which might provide a channel for RNA release. However, the process of calicivirus RNA release is not yet fully understood. Our findings suggest that the separation of the FCV capsid from its genome RNA (gRNA) occurs rapidly in the early endosomes of infected cells. Using a liposome model decorated with the FCV cell receptor fJAM-A, we demonstrate that FCV releases its gRNA into the liposomes by penetrating membranes under low pH conditions. Furthermore, we found that VP2, which is rich in hydrophobic residues at its N-terminus, functions as the pore-forming protein. When we substituted the VP2 N-terminal hydrophobic residues, the gRNA release efficacy of the FCV mutants decreased. In conclusion, our results suggest that in the acidic environment of early endosomes, FCV VP2 functions as the pore-forming protein to mediate gRNA release into the cytoplasm of infected cells. This provides insight into the mechanism of calicivirus genome release. IMPORTANCE Research on the biology and pathogenicity of certain caliciviruses, such as Norovirus and Sapovirus, is hindered by the lack of easy-to-use cell culture system. Feline calicivirus (FCV), which grows effectively in cell lines, is used as a substitute. At present, there is limited understanding of the genome release mechanism in caliciviruses. Our findings suggest that FCV uses VP2 to pierce the endosome membrane for genome release and provide new insights into the calicivirus gRNA release mechanism. Research on the biology and pathogenicity of certain caliciviruses, such as Norovirus and Sapovirus, is hindered by the lack of easy-to-use cell culture system. Feline calicivirus (FCV), which grows effectively in cell lines, is used as a substitute. At present, there is limited understanding of the genome release mechanism in caliciviruses. Our findings suggest that FCV uses VP2 to pierce the endosome membrane for genome release and provide new insights into the calicivirus gRNA release mechanism.

分类号:

  • 相关文献
作者其他论文 更多>>