Isolation and Identification of Postharvest Rot Pathogens in Citrus x tangelo and Their Potential Inhibition with Acidic Electrolyzed Water

文献类型: 外文期刊

第一作者: Ji, Ying

作者: Ji, Ying;Liu, Ye;Liu, Shaoyan;Huang, Huaming;Wang, Jieqiong;Jiang, Xuanjing

作者机构:

关键词: Citrus x tangelo; Fungal disease; Isolation and identification; Acidic electrolyzed water (AEW)

期刊名称:FOOD AND ENVIRONMENTAL VIROLOGY ( 影响因子:3.4; 五年影响因子:3.1 )

ISSN: 1867-0334

年卷期: 2024 年

页码:

收录情况: SCI

摘要: This study focused on the identification of rot-causing fungi in Citrus x tangelo (tangelo) with a particular emphasis on investigating the inhibitory effects of acidic electrolyzed water on the identified pathogens. The dominant strains responsible for postharvest decay were isolated from infected tangelo fruits and characterized through morphological observation, molecular identification, and pathogenicity detection. Two strains were isolated from postharvest diseased tangelo fruits, cultured and morphologically characterized, and had their gene fragments amplified using primers ITS1 and ITS4. The results revealed the rDNA-ITS sequence of two dominant pathogens were 100% homologous with those of Penicillium citrinum and Aspergillus sydowii. These isolated fungi were confirmed to induce tangelo disease, and subsequent re-isolation validated their consistency with the inoculum. Antifungal tests demonstrated that acidic electrolyzed water (AEW) exhibited a potent inhibitory effect on P. citrinum and A. sydowii, with EC50 values of 85.4 mu g/mL and 60.12 mu g/mL, respectively. The inhibition zones of 150 mu g/mL AEW to 2 kinds of pathogenic fungi were over 75 mm in diameter. Furthermore, treatment with AEW resulted in morphological changes such as bending and shrinking of the fungal hyphae surface. In addition, extracellular pH, conductivity, and absorbance at 260 nm of the fungi hypha significantly increased post-treatment with AEW. Pathogenic morphology and IST sequencing analysis confirmed P. citrinum and A. sydowii as the primary pathogenic fungi, with their growth effectively inhibited by AEW.

分类号:

  • 相关文献
作者其他论文 更多>>