GroEL protein from the potential biocontrol agent Rhodopseudomonas palustris enhances resistance to rice blast disease
文献类型: 外文期刊
第一作者: Wu, Xiyang
作者: Wu, Xiyang;Chen, Yue;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Zhang, Deyong;Wu, Xiyang;Chen, Yue;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Zhang, Deyong;Wu, Xiyang;Chen, Yue;Tan, Xinqiu;Liu, Yong;Zhang, Deyong;Lv, Liang;Lv, Liang
作者机构:
关键词: Rhodopseudomonas palustris; GroEL; Magnaporthe oryzae; antifungal effect
期刊名称:PEST MANAGEMENT SCIENCE ( 影响因子:4.845; 五年影响因子:4.674 )
ISSN: 1526-498X
年卷期: 2021 年 77 卷 12 期
页码:
收录情况: SCI
摘要: BACKGROUND GroEL, which is a chaperone, plays a key role in maintaining protein homeostasis and, among other functions, serves to prevent protein misfolding and aggregation. In addition, the GroEL protein also has a significant effect on enhancing plant resistance and inhibiting plant diseases. However, the function of the GroEL protein in the inhibition of rice blast remains unknown. RESULTS Field experiment results show that photosynthetic bacteria PSB-06 have a good control effect on Magnaporthe oryzae. PSB-06 also can promote rice growth and enhance stress resistance. A GroEL protein which was separated and purified from photosynthetic bacteria had a significant antagonistic effect on appressorial formation and pathogenicity of Magnaporthe oryzae, meanwhile transcriptional analysis demonstrated that the GroEL protein could improve the expression of defense gene of rice. CONCLUSION Our results show that the photosynthetic bacteria Rhodopseudomonas palustris significantly controls rice blast disease. Its action involves an extracellular GroEL protein, which inhibits appressoria formation, antagonizes the pathogenicity of Magnaporthe oryzae and promotes a host defense response. The research results provide evidence of the potential of this photosynthetic bacterium as a biocontrol agent at least for rice blast control.
分类号:
- 相关文献
作者其他论文 更多>>
-
A novel antifungal peptide, SP1.2, from Rhodopseudomonas palustris against the rice blast pathogen
作者:Wu, Xiyang;Qin, Yingfei;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong
关键词:SP1.2 peptide; antifungal activity; ROS burst; Magnaporthe oryzae; rice defense
-
The new CFEM protein CgCsa required for Fe 3+homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides
作者:Liu, Sizhen;Bu, Zhigang;Zhu, Yonghua;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Tan, Xinqiu
关键词:Colletotrichum gloeosporioides; CgCsa; CFEM; Pathogenicity; Iron
-
Nitrification inhibitor 3,4-dimethylpyrazole phosphate alleviates the dissolution of soil inorganic carbon caused by nitrogen fertilization
作者:Zhao, Yi;Zhao, Yi;Meng, Fanqiao;Zhao, Yi;Bol, Roland;Xiao, Guangmin;Zhang, Xin;Tan, Yuechen;Bol, Roland
关键词:Soil inorganic carbon; Pedogenic carbonates; DMPP; Soil carbon stocks; delta C-13
-
Comprehensive Analysis of the DnaJ/HSP40 Gene Family in Maize (Zea mays L.) Reveals that ZmDnaJ96 Enhances Abiotic Stress Tolerance
作者:Cao, Liru;Wang, Guorui;Pang, Yunyun;Zhang, Qianjin;Zhang, Xin;Wang, Zhenghua;Lu, Xiaomin;Cao, Liru;Lu, Xiaomin;Fahim, Abbas Muhammad
关键词:DnaJ; HSP40; Gene resources; Evolution; Drought; Heat stress
-
Biocontrol of Meloidogyne incognita by Bacillus velezensis TA-1 through induction of host resistance in tomato
作者:Ji, Xiaoxue;Liu, Bingjie;Fan, Miao;Qiao, Kang;Wang, Zhongtang;Zhang, Siqi;Liu, Yong;Qiao, Kang;Zhang, Shouan
关键词:Bacillus velezensis; Biological control; Induced resistance; Meloidogyne incognita
-
Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses
作者:Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling;Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling
关键词:jasmonates; biosynthesis; tea plant; defense response; biotic stress; abiotic stress
-
Extraction Methods Determine the Quality of Soil Microbiota Acquisition
作者:Liu, Zhuoxin;Zhang, Chi;Ma, Jiejia;Chen, Lijie;Su, Pin;Zhang, Deyong;Liu, Zhuoxin;Zhang, Chi;Ma, Jiejia;Peng, Qianze;Du, Xiaohua;Sun, Shu'e;Cheng, Ju'e;Peng, Weiye;Chen, Lijie;Gu, Zepei;Zhang, Weixing;Su, Pin;Zhang, Deyong;Peng, Qianze;Zhang, Deyong;Peng, Qianze;Su, Pin;Zhang, Deyong
关键词:extraction microbiota; microbiota diversity; sonication; oscillation and processing times