Quantification of Nitrogen Status in Rice by Least Squares Support Vector Machines and Reflectance Spectroscopy
文献类型: 外文期刊
第一作者: Shao, Yongni
作者: Shao, Yongni;Bao, Yidan;He, Yong;Zhao, Chunjiang
作者机构:
关键词: Rice; Nitrogen; Least squares support vector machines (LS-SVM); Partial least square (PLS); Back propagation neural network (BPNN); SPAD value
期刊名称:FOOD AND BIOPROCESS TECHNOLOGY ( 影响因子:4.465; 五年影响因子:4.793 )
ISSN: 1935-5130
年卷期: 2012 年 5 卷 1 期
页码:
收录情况: SCI
摘要: The estimation of nitrogen status non-destructively in rice was performed using canopy spectral reflectance with visible and near-infrared reflectance (Vis/NIR) spectroscopy. The canopy spectral reflectance of rice grown with different levels of nitrogen inputs was determined at several important growth stages. This study was conducted at the experiment farm of Zhejiang University, Hangzhou, China. The soil plant analysis development (SPAD) value was used as a reference data that indirectly reflects nitrogen status in rice. A total of 64 rice samples were used for Vis/NIR spectroscopy at 325-1075 nm using a field spectroradiometer, and chemometrics of partial least square (PLS) was used for regression. The correlation coefficient (r), root mean square error of prediction, and bias in prediction set by PLS were, respectively, 0.8545, 0.7628, and 0.0521 for SPAD value prediction in tillering stage, 0.9082, 0.4452, and -0.0109 in booting stage, and 0.8632, 0.7469, and 0.0324 in heading stage. Least squares support vector machine (LS-SVM) model was compared with PLS and back propagation neural network methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SPAD values of rice. Independent component analysis was executed to select several sensitive wavelengths (SWs) based on loading weights; the optimal LS-SVM model was achieved with SWs of 560, 575-580, 700, 730, and 740 nm for SPAD value prediction in booting stage. It is concluded that Vis/NIR spectroscopy combined with LS-SVM regression method is a promising technique to monitor nitrogen status in rice.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Enhancing wheat protein through low-water-fertility under climate change without yield penalty
作者:Zhang, Cong;Chen, Jie;Hu, Kelin;Zhang, Cong;He, Yong
关键词:Climate change; Wheat; Protein and its components; Yield; Adapted measures
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning