Prediction of Wheat Grain Protein by Coupling Multisource Remote Sensing Imagery and ECMWF Data
文献类型: 外文期刊
第一作者: Xu, Xiaobin
作者: Xu, Xiaobin;Teng, Cong;Chen, Liping;Li, Zhenhai;Xu, Xiaobin;Jin, Xiuliang;Xu, Xiaobin;Teng, Cong;Zhao, Yu;Du, Ying;Zhao, Chunqi;Yang, Guijun;Song, Xiaoyu;Gu, Xiaohe;Chen, Liping;Li, Zhenhai;Xu, Xiaobin;Teng, Cong;Casa, Raffaele
作者机构:
关键词: Multi-source Remote Sensing Imagery; European Center for Medium-range Weather Forecasts (ECMWF) meteorological data; grain protein content; hierarchical linear model
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN:
年卷期: 2020 年 12 卷 8 期
页码:
收录情况: SCI
摘要: Industrialization production with high quality and effect on winter is an important measure for accelerating the shift from increasing agricultural production to improving quality in terms of grain protein content (GPC). Remote sensing technology achieved the GPC prediction. However, large deviations in interannual expansion and regional transfer still exist. The present experiment was carried out in wheat producing areas of Beijing (BJ), Renqiu (RQ), Quzhou, and Jinzhou in Hebei Province. First, the spectral consistency of Landsat 8 Operational Land Imager (LS8) and RapidEye (RE) was compared with Sentinel-2 (S2) satellites at the same ground point in the same period. The GPC prediction model was constructed by coupling the vegetation index with the meteorological data obtained by the European Center for Medium-range Weather Forecasts using hierarchical linear model (HLM) method. The prediction and spatial expansion of regional GPC were validated. Results were as follows: (1) Spectral information calculated from S2 imagery were highly consistent with LS8 (R-2 = 1.00) and RE (R-2 = 0.99) imagery, which could be jointly used for GPC modeling. (2) The predicted GPC by using the HLM method (R-2 = 0.524) demonstrated higher accuracy than the empirical linear model (R-2 = 0.286) and showed higher improvements across inter-annual and regional scales. (3) The GPC prediction results of the verification samples in RQ, BJ, Xiaotangshan (XTS) in 2018, and XTS in 2019 were ideal with root mean square errors of 0.61%, 1.13%, 0.91%, and 0.38%, and relative root mean square error of 4.11%, 6.83%, 6.41%, and 2.58%, respectively. This study has great application potential for regional and inter-annual quality prediction.
分类号:
- 相关文献
作者其他论文 更多>>
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications
作者:Zhou, Jiankang;Wang, Wenting;Zhang, Zhuo;Qiao, Jiawei;Bai, Yu;Zhao, Chaofan;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Zhou, Jiankang;Guo, Shengyuan;Qin, Peiyou;Ren, Guixing;Zhou, Jiankang;Zhang, Zhuo;Qin, Peiyou;Ren, Guixing;Zhu, Gege;Teng, Cong
关键词:hyacinth bean; bioactive compounds; health benefits; future application
-
Identification and expression analysis of the bZIP and WRKY gene families during anthocyanins biosynthesis in Lagerstroemia indica L
作者:Gu, Cuihua;Hong, Sidan;Shang, Linxue;Zhang, Guozhe;Zhao, Yu;Ma, Qingqing;Wang, Jie;Wang, Jie;Ma, Dandan;Wang, Jie
关键词:bZIP; WRKY; Gene family; Lagerstroemia indica; Flower color
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Optimized Design of Robotic Arm for Tomato Branch Pruning in Greenhouses
作者:Ma, Yuhang;Chen, Liping;Feng, Qingchun;Sun, Yuhuan;Guo, Xin;Zhang, Wanhao;Wang, Bowen;Chen, Liping;Feng, Qingchun;Guo, Xin;Chen, Liping
关键词:agricultural robot; tomato pruning; manipulator; structural optimization