Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems
文献类型: 外文期刊
第一作者: Luan, Haoan
作者: Luan, Haoan;Huang, Shaowen;Tang, Jiwei;Zhang, Huaizhi;Luan, Haoan;Chen, Xinping;Gao, Wei;Li, Mingyue;Masiliunas, Dainius
作者机构:
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2020 年 15 卷 2 期
页码:
收录情况: SCI
摘要: Soil microbial communities and enzyme activities together affect various ecosystem functions of soils. Fertilization, an important agricultural management practice, is known to modify soil microbial characteristics; however, inconsistent results have been reported. The aim of this research was to make a comparative study of the effects of different nitrogen (N) fertilizer rates and types (organic and inorganic) on soil physicochemical properties, enzyme activities and microbial attributes in a greenhouse vegetable production (GVP) system of Tianjin, China. Results showed that manure substitution of chemical fertilizer, especially at a higher substitution rate, improved soil physicochemical properties (higher soil organic C (SOC) and nutrient (available N and P) contents; lower bulk densities), promoted microbial growth (higher total phospholipid fatty acids and microbial biomass C contents) and activity (higher soil hydrolase activities). Manure application induced a higher fungi/bacteria ratio due to a lower response in bacterial than fungal growth. Also, manure application greatly increased bacterial stress indices, as well as microbial communities and functional diversity. The principal component analysis showed that the impact of manure on microbial communities and enzyme activities were more significant than those of chemical fertilizer. Furthermore, redundancy analysis indicated that SOC and total N strongly influenced the microbial composition, while SOC and ammonium-N strongly influenced the microbial activity. In conclusion, manure substitution of inorganic fertilizer, especially at a higher substitution rate, was more efficient for improving soil quality and biological functions.
分类号:
- 相关文献
作者其他论文 更多>>
-
Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration
作者:Fang, Linfa;Lakshmanan, Prakash;Su, Xiaoxuan;Shi, Yujia;Chen, Zheng;Zhang, Yu;Xiao, Ran;Chen, Xinping;Lakshmanan, Prakash;Wu, Junxi;Lakshmanan, Prakash;Lakshmanan, Prakash;Sun, Wei
关键词:Residual antibiotics; Livestock manure decomposition; Microbial community; Co -occurrence network; Enzyme activities
-
Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.)
作者:Wang, Qian;Cao, Huimin;Wang, Jingcheng;Gu, Zirong;Zhang, Zeyan;Zhao, Xueying;Gao, Wei;Zhu, Huijun;Yan, Hubin;Yan, Jianjun;Hao, Qingting;Zhang, Yaowen;Lin, Qiuyun
关键词:mung bean; seed coat color; bulk segregated analysis sequencing; transcriptome; metabolism
-
Effects of plant tissue permeability on invasion and population bottlenecks of a phytopathogen
作者:Jiang, Gaofei;Shi, Xiaojun;Chen, Xinping;Ding, Wei;Zhang, Yong;Jiang, Gaofei;Zhang, Yuling;Jousset, Alexandre;Zhao, Fang-Jie;Xu, Yangchun;Shen, Qirong;Wei, Zhong;Chen, Min;Zhang, Yong;Ramoneda, Josep;Han, Liangliang;Shi, Yu;Peyraud, Remi;Wang, Yikui;Hikichi, Yasufumi;Ohnishi, Kouhei;Dini-Andreote, Francisco;Dini-Andreote, Francisco;Dini-Andreote, Francisco
关键词:
-
Rhodium-catalyzed C-H selective amination of 2,4-diarylquinazolines with N-fluorobenzenesulfonimide
作者:Gao, Wei;Gao, Wei;Hu, Lifang;Gao, Fang;Hu, Guozhu;Zhou, Xueying
关键词:C-H activation; NFSI; quinazolines; rhodium catalyst
-
Potassium resources management systems in Chinese agriculture: Yield gaps and environmental costs
作者:Li, Dongxue;Gu, Jun;Wang, Yiliu;Chen, Xiaoqin;Lu, Dianjun;Wang, Huoyan;Zhou, Jianmin;Li, Dongxue;Gu, Jun;Wang, Yiliu;Chen, Xiaoqin;Lu, Dianjun;Wang, Huoyan;Li, Ting;Tao, Yueyue;Cui, Zhenling;Chen, Xinping;Chen, Xinping;Lu, Jianwei;Lu, Jianwei
关键词:Imbalanced nutrient management; Straw-K recycling; Soil K fertility; Yield gaps; Carbon mitigation potential; Life cycle assessment
-
Translatome and Transcriptome Analyses Reveal the Mechanism that Underlies the Enhancement of Salt Stress by the Small Peptide Ospep5 in Plants
作者:Wang, Jinyan;Li, Yang;Li, Mingyue;Zhang, Wenting;Ling, Xitie;Chen, Tianzi;Guo, Dongshu;Yang, Yuwen;Liu, Qing;Zhang, Baolong;Wang, Jinyan;Li, Yang;Li, Mingyue;Zhang, Wenting;Ling, Xitie;Chen, Tianzi;Guo, Dongshu;Yang, Yuwen;Liu, Qing;Zhang, Baolong;Wang, Jinyan;Chen, Tianzi;Guo, Dongshu;Yang, Yuwen;Liu, Qing;Zhang, Baolong;Zheng, Zhongbing;Zhang, Baolong;Liu, Qing;Lu, Yaping;Hua, Kai
关键词:translatome; transcriptome; peptidome; small peptides; rice salt tolerance
-
Temperature Matters More than Fertilization for Straw Decomposition in the Soil of Greenhouse Vegetable Field
作者:Ma, Long;Tang, Jiwei;Huang, Shaowen;Li, Ruonan;Wang, Liying;Luan, Haoan
关键词:greenhouse vegetables; straw decomposition; incubation temperatures; fertilization treatments; enzyme activity