Improved convolutional neural network-assisted laser-induced breakdown spectroscopy for identification of soil contamination types
文献类型: 外文期刊
第一作者: Gou, Yujiang
作者: Gou, Yujiang;Fu, Xinglan;Zhao, Shilin;He, Panyu;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
作者机构:
关键词: Soil contamination types; Laser -induced breakdown spectroscopy; Convolutional neural network; Identification
期刊名称:SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY ( 影响因子:3.3; 五年影响因子:3.1 )
ISSN: 0584-8547
年卷期: 2024 年 215 卷
页码:
收录情况: SCI
摘要: Identification of soil contamination types is of great scientific significance for soil remediation and environmental pollution control. However, traditional identification methods for soil determination are time-consuming, laborious, and complicated. Here, we proposed an accurate method for identifying soil contamination types based on laser-induced breakdown spectroscopy (LIBS) and an improved convolutional neural network (CNN) model. The spectral feature extraction-based multiple attention residual network (SFEMARNet) model was constructed to extract detailed features by spectral feature extraction (SFE) modules, and highlight useful features by multiple attention residual (MAR) modules in LIBS spectral data. In addition, deep learning models and machine learning models were used to identify the data. The results showed that the SFEMARNet model achieved an accuracy of 98.75% on the test set. The recall, precision, and F1-score of the models reached 98.78%, 98.75%, and 98.76%, respectively, which were significantly better than the three deep learning models and of four machine learning models. It seems that the SFEMARNet model combined with LIBS technology may be a potential method for the accurate identification of soil contamination types.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning
-
Green Fruit Detection with a Small Dataset under a Similar Color Background Based on the Improved YOLOv5-AT
作者:Fu, Xinglan;Zhao, Shilin;Wang, Chenghao;Tang, Xuhong;Li, Guanglin;Tao, Dan;Jiao, Leizi;Dong, Daming
关键词:green fruit; precision detection; feature information; data augmentation methods; channel attention module; spatial attention module