Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology
文献类型: 外文期刊
第一作者: Zhou, Xin
作者: Zhou, Xin;Zhao, Chunjiang;Sun, Jun;Yao, Kunshan;Xu, Min;Zhao, Chunjiang;Zhao, Chunjiang
作者机构:
关键词: Hyperspectral image; Deep learning; Transfer learning; Oilseed rape; Heavy metal
期刊名称:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY ( 影响因子:4.4; 五年影响因子:3.9 )
ISSN: 1386-1425
年卷期: 2023 年 290 卷
页码:
收录情况: SCI
摘要: The evaluation capability of hyperspectral imaging technology was studied for the forecasts of heavy metal lead concentration of oilseed rape plant. In addition, a transfer stacked auto-encoder (T-SAE) algorithm including two network methods, the dual-model T-SAE and the single-model T-SAE, was proposed in this paper. The hyper -spectral images of oilseed rape leaf and root were acquired under different Pb stress concentrations. The entire region of the oilseed rape leaf (or root) was selected as the region of interest (ROI) to extract the spectral data, and standard normalized variable (SNV), first derivative (1st Der) and second derivative (2nd Der) were used to preprocess the ROI spectra. Besides, the principal component analysis (PCA) algorithm was used to reduce the dimensionality of the spectral data before and after preprocessing. Hence, the best pre-processed data was determined for subsequent research and analysis. Furthermore, the SAE deep learning networks were built based on the oilseed rape leaf data, oilseed rape root data, and the combined data of oilseed rape leaf and root based on the best pre-processed spectral data. Finally, the T-SAE models were obtained through transfer learning of the best SAE deep learning network. The results show that the best preprocessing algorithms of the oilseed rape leaf and root spectra were SNV and 1st Der algorithm, respectively. In addition, the prediction set recognition ac-curacy of the best T-SAE model of Pb stress gradient in oilseed rape plants was 98.75%. Additionally, the pre-diction set coefficient of determination of the best T-SAE model of the Pb content in the oilseed rape leaf and root data were 0.9215 and 0.9349, respectively. Therefore, a deep transfer learning method combined with hyper -spectral imaging technology can effectively realize the the qualitative and quantitative detection of heavy metal Pb in oilseed rape plants.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Effect of increased pCO2 and temperature on the phytoplankton community in the coastal of Yellow Sea
作者:Fu, Xiaoting;Fu, Xiaoting;Qin, Jiahui;Ding, Changling;Sun, Jun;Sun, Jun;Fu, Xiaoting;Qin, Jiahui;Ding, Changling;Sun, Jun;Wei, Yuqiu
关键词:Microphytoplankton and picophytoplankton; community; Ocean acidification; Carbon dioxide; Temperature
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Development of a comprehensive evaluation system for the sensory and nutritional quality of winter jujube (Ziziphus jujuba Mill. cv. Dongzao)
作者:Kong, Xiabing;Xu, Min;Wang, Kunyu;Han, Lingxi;Guo, Qidi;Wan, Haoliang;Nie, Jiyun;Kong, Xiabing;Xu, Min;Chen, Qiusheng;Li, Qingjun;Nie, Jiyun
关键词:Winter jujube; Comprehensive evaluation; Sensory quality; Functional components; Antioxidant activity
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight