Double Mutations in Succinate Dehydrogenase Are Involved in SDHI Resistance in Corynespora cassiicola

文献类型: 外文期刊

第一作者: Sun, Bingxue

作者: Sun, Bingxue;Zhu, Guangxue;Xie, Xuewen;Chai, Ali;Li, Lei;Shi, Yanxia;Li, Baoju

作者机构:

关键词: succinate dehydrogenase inhibitors; Corynespora cassiicola; double mutation; SDHI-resistance; fitness

期刊名称:MICROORGANISMS ( 影响因子:4.926; 五年影响因子:5.143 )

ISSN:

年卷期: 2022 年 10 卷 1 期

页码:

收录情况: SCI

摘要: Simple Summary With the application of fungicide in agriculture, resistance to fungicide has become a serious problem. It is important to assess the evolution of resistance for development of disease prevention and control. We confirmed, by site-directed mutagenesis, that single mutations conferring moderate or low resistance are more likely to evolve into double mutations conferring higher resistance under the selective pressure of SDHI. However, the double mutations suffer large of fitness penalty than single mutation. We recommend that the use of SDHI in agriculture should be appropriately reduced or that other types of fungicides should be used to control plant diseases, such as dicarboximide fungicides (DCFs), to avoid the emergence of very resistant plant pathogens. With the further application of succinate dehydrogenase inhibitors (SDHI), the resistance caused by double mutations in target gene is gradually becoming a serious problem, leading to a decrease of control efficacy. It is important to assess the sensitivity and fitness of double mutations to SDHI in Corynespora cassiicola and analysis the evolution of double mutations. We confirmed, by site-directed mutagenesis, that all double mutations (B-I280V+D-D95E/D-G109V/D-H105R, B-H278R+D-D95E/D-G109V, B-H278Y+D-D95E/D-G109V) conferred resistance to all SDHI and exhibited the increased resistance to at least one fungicide than single point mutation. Analyses of fitness showed that all double mutations had lower fitness than the wild type; most of double mutations suffered more fitness penalties than the corresponding single mutants. We also further found that double mutations (B-I280V+D-D95E/D-G109V/D-H105R) containing low SDHI-resistant single point mutation (B-I280V) exhibited higher resistance to SDHI and low fitness penalty than double mutations (B-H278Y+D-D95E/D-G109V) containing high SDHI-resistant single mutations (B-H278Y). Therefore, we may infer that a single mutation conferring low resistance is more likely to evolve into a double mutation conferring higher resistance under the selective pressure of SDHI. Taken together, our results provide some important reference for resistance management.

分类号:

  • 相关文献
作者其他论文 更多>>