Zinc Stress Alters Sugar Content in Rice Plants and the Reproduction and Trehalose Metabolism in Nilaparvata lugens
文献类型: 外文期刊
第一作者: Liu, Yong-Kang
作者: Liu, Yong-Kang;Zheng, Xu-Song;Xu, Hong-Xing;Liu, Yong-Kang;Xu, Cai-Di;Chao, Lei;Zhou, Yan-Fei;Bai, Xue-Lian;Zhou, Ting;Tang, Bin;Li, Guo-Yong;Wu, Yan
作者机构:
关键词: carbohydrate metabolism; fecundity; heavy metal; pest; planthopper; agriculture
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2023 年 13 卷 1 期
页码:
收录情况: SCI
摘要: Excessive zinc (Zn) is toxic to plants, but the effect of zinc-stressed plants on herbivorous insects is still unclear. Hence, we assessed the effect of zinc-stressed rice plants on its feeding pest, Nilaparvata lugens. The soil-rice-N. lugens system was treated with Zn2+ solution. Sugar content in rice was measured, and the reproduction and trehalose metabolism in N. lugens were assessed. The trehalase activity in rice significantly decreased at 100 mg center dot kg(-1) Zn2+, and the trehalose content increased. The glucose and starch content increased at higher Zn2+ concentrations. The fecundity and trehalose content of N. lugens decreased after feeding on zinc-stressed rice, and the glucose content in the high Zn2+ group was significantly higher than that in the low Zn2+ group. In addition, the soluble trehalase activity of N. lugens significantly decreased under the 125 mg center dot kg(-1) treatment, while the activity of membrane-bound trehalase significantly increased under the 150 mg center dot kg(-1) treatment. Quantitative RT-PCR indicated significantly lower expressions of NlTre1-1, NlTre2, and NITps after Zn treatment. In conclusion, Zn2+ treatment significantly altered the sugar content in rice plants; it also decreased the fecundity of N. lugens, which may be mediated by alterations in trehalose metabolism.
分类号:
- 相关文献
作者其他论文 更多>>
-
Antibacterial mechanism of vitamin C against Staphylococcus aureus, reduction of toxicity of metabolites and its application in pasteurized milk
作者:Tian, Lei;Huang, Chunyang;Liu, Xing;Zhang, Yuxin;Zhang, Chunling;Wang, Xin;Zhou, Ting;Yu, Ying;Pan, Hu;Dai, Yanna;Pu, Jifeng;Fu, Chengyu;Zhang, Pengfei
关键词:Vitamin C; Staphylococcus aureus; Antibacterial mechanism; Pasteurized milk
-
Paenibacillus mesotrionivorans sp. nov., a Mesotrione-Degrading Strain Isolated from Soil
作者:Song, Ye;Wu, Yan;Ruan, Luyao;Wan, Minglai;Liu, Bin;He, Jian;Chen, Leyao;Wan, Minglai;Zhang, Baolong;He, Jian;He, Jian
关键词:
-
Transcriptomic insight into the underlying mechanism of induced molting on reproductive remodeling, performance and egg quality in laying hen
作者:Ma, Pengyun;Chen, Jilan;Zhang, Xiaoke;Xu, Xinying;Ma, Zhong;Li, Yunlei;Ma, Pengyun;Xue, Fuguang;Zhang, Hao;Wu, Yan;Li, Ling;Qu, Yuanqi
关键词:Induced molting; Reproductive remodeling; Egg quality; Transcriptomic analysis; Laying hen
-
New Insights into the Regulatory Non-Coding RNAs Mediating Rice-Brown Planthopper Interactions
作者:Hu, Liang;Wu, Yan;Zha, Wenjun;Zhou, Lei;You, Aiqing;Zhou, Lei;You, Aiqing
关键词:rice; brown planthopper; non-coding RNA; resistance; cross-kingdom interactions
-
Comparative transcriptomic and metabolomics analysis of ovary in Nilaparvata lugens after trehalase inhibition
作者:Liu, Yongkang;Yang, Fan;Wan, Sijing;Wang, Xianzhong;Guan, Liwen;Li, Yan;Xie, Binghua;Wang, Shigui;Tang, Bin;Xu, Caidi;Tan, Xiao-Ling;Tan, Xiao-Ling
关键词:
Nilaparvata lugens ; Transcriptomic; Metabolomics; Ovary development; Trehalase -
Advances in Anther Culture-Based Rice Breeding in China
作者:Chen, Xinxing;Li, Sanhe;Zha, Wenjun;Li, Changyan;Zhou, Lei;You, Aiqing;Wu, Yan;Chen, Xinxing;Zhou, Lei;You, Aiqing
关键词:rice (
Oryza sativa L.) anther culture breeding; influencing factors; current status of research; prospect -
Joint transcriptomics and metabolomics unveil the protective mechanism of tamarind seed polysaccharide against antibiotic-induced intestinal barrier damage
作者:Chen, Yinan;Sun, Xianbao;Kou, Yuxing;Ma, Xuan;Song, Lihua;Wu, Yan;Li, Xujiao;Zhang, Hui;Xie, Fan;Song, Zibo;Yuan, Chunmei;Huang, Siyan;Song, Zibo;Yuan, Chunmei;Huang, Siyan
关键词:Tamarind seed polysaccharide; Intestinal barrier damage; Transcriptomics; Metabolomics; Clindamycin