RNA-SEQ ANALYSIS REVEALS THE MECHANISM IN RESPONSE TO COLD STRESS OF PEACH cv 'Dingjiaba'
文献类型: 外文期刊
第一作者: Li, Xiaolan
作者: Li, Xiaolan;Wang, Hong;Li, Xiaolan;Wang, Hong;Wu, Xinquan
作者机构:
关键词: cold stress; peach; Prunus persica; RNA-Seq.
期刊名称:CRYOLETTERS ( 影响因子:1.0; 五年影响因子:0.9 )
ISSN: 0143-2044
年卷期: 2024 年 45 卷 2 期
页码:
收录情况: SCI
摘要: BACKGROUND: 'Dingjiaba' is an important Prunus persica cultivar (cv) mainly grown in the Hexi corridor in northwest China, which has an inherited strong cold tolerance. OBJECTIVE: To compare the transcriptome and physiology data of leaves of cvs 'Dingjiaba' (D) and 'Kanoiwa' (K) following cold treatment at different time periods, in order to gain new insights into the mechanisms of cold adaptation in 'Dingjiaba'. MATERIALS AND METHODS: We analyzed the transcriptomic and physiological data of leaves of D and K cvs exposed to 0 h (D0/K0), 2 h (D2/K2), 6 h (D6/K6) and 12 h (D12/K12) cold stress. RESULTS: Low temperature stress caused membrane damage and led to increased rate of electrolyte leakage and increased MDA content. Cold stress induced the accumulation of soluble sugars, soluble proteins and proline in leaves of both cvs, with a lower increase in K compared to D. Transcriptome analysis identified 4,631, 5,069, 5,662 and 3,886 differentially expressed genes (DEGs) between D0 and K0, D2 and K2, D6 and K6 and D12 and K12, respectively. The differentially expressed genes significantly enriched in metabolic pathways and biosynthesis of secondary metabolites. We further validated the reliability of sequencing data of the RNA-Seq with Real -Time Quantitative PCR, which suggested that the expression trend of the RNASeq were same as RT-PCR. CONCLUSIONS: These results provide novel insights into a series of molecular mechanisms underlying physiological metabolism and defense.
分类号:
- 相关文献
作者其他论文 更多>>
-
Multifunctional electrospun nanofibrous film integrated with cinnamon essential oil emulsion stabilized by dealkali lignin for active packaging material
作者:Li, Na;Xiang, Hong-jia;Qiu, Wei-peng;Hong, Yu-xuan;Huang, Kai-wen;Wei, Xiao-qun;Wang, Hong;Wen, Peng;Hu, Teng-gen;Guo, Chuang-zong;Yao, Xu-rui
关键词:Cinnamon essential oil; Dealkali lignin; Emulsion electrospinning; Antibacterial; Antioxidant
-
Biodegradable taro stem cellulose aerogel: A simple approach for adsorbing microplastics and dyestuffs contaminants
作者:Qiu, Wei-peng;Su, Hai-ze;Su, Hao;Li, Na;Lai, Li-shan;Zhu, Jia-le;Xu, Zhen-lin;Wang, Hong;Wen, Peng;Hu, Teng-gen;Zhao, Ya-li;Wen, Peng
关键词:Biomass aerogel; Taro stem microcrystalline cellulose; Microplastics and dyes; Adsorption mechanism
-
α-Glycerol Monolaurate Promotes Tight Junction Assembly and Enhances Epithelial Barrier Function in IPEC-J2 Cells and Partridge Chicks
作者:Dai, Siyu;Meng, Shuai;Liu, Shifeng;Wang, Hong;Li, Dagang
关键词:CaSR/PLC/IP3/AMPK signaling pathway; intestinal epithelia; tight junction assembly; alpha-glycerol monolaurate
-
MdGRF22, a 14-3-3 Family Gene in Apple, Negatively Regulates Drought Tolerance via Modulation of Antioxidant Activity and Interaction with MdSK
作者:Ren, Jiaxuan;Wang, Hong;Zhao, Mingxin;Liang, Guoping;Lu, Shixiong;Mao, Juan
关键词:apple;
MdGRF22 ; Y2H; antioxidant system -
Identification of serine acetyltransferase (SAT) gene family in peach (Prunus persica) and study on the function of PpSAT1 gene regulating adventitious root formation
作者:Hao, Lanlan;Zhang, Fan;Zhang, Xuebing;Yang, Yang;Wang, Hong;Hao, Lanlan;Wang, Hong
关键词:
Prunus persica ; SAT gene family; Gene cloning; Adventitious root; Genetic transformation -
DLVO interaction energies between hollow nanoparticles and fractal surfaces
作者:Wang, Hong;Yao, Li;Zhang, Qi;Wang, Lin;Wu, Yueying;Cai, Kai;Lin, Chaowen;Chen, Honglin;Liu, Dinghui;Shen, Chongyang;Huang, Yuanfang
关键词:Hollow nanoparticle; Fractal surface; Attachment; Detachment
-
Targeting the phospholipid repair system of Escherichia coli: New mechanistic insights into the antibacterial activity of sanggenon D from mulberry
作者:Lin, Junhui;Yang, Zhangchang;Li, Shipei;Wang, Hong;Lin, Junhui;Liu, Fan;Huang, Zhaoxiang;Zou, Yuxiao;Yang, Zhangchang;Li, Shipei;Pang, Daorui
关键词:Escherichia coli; Glycerophospholipid profile; Phospholipid repair system; Membrane integrity; Phospholipid recycling; de novo phospholipid synthesis