Decoding fungal communication networks: molecular signaling, genetic regulation, and ecological implications

文献类型: 外文期刊

第一作者: Ishfaq, Shumila

作者: Ishfaq, Shumila;Anjum, Arslan;Rafiq, Amna;Guo, Wei;Anum, Hadiqa;Shaheen, Tayyaba;Zulfiqar, Sana;Mehboob-ur-Rahman, Wei;Ishfaq, Anila;Ramzan, Umera

作者机构:

关键词: Fungal crosstalk; Genetic interactions; Signal transduction; Quorum sensing

期刊名称:FUNCTIONAL & INTEGRATIVE GENOMICS ( 影响因子:3.1; 五年影响因子:3.0 )

ISSN: 1438-793X

年卷期: 2025 年 25 卷 1 期

页码:

收录情况: SCI

摘要: Fungal communication networks regulate essential biological processes, enabling fungi to adapt to environmental changes, coordinate development, and establish interactions within microbial communities. These networks are mediated by diverse signaling molecules, including volatile organic compounds (VOCs), peptide signaling molecules, and quorum-sensing molecules, which facilitate intra- and interspecies communication. The intricate regulation of these signals occurs through specialized signal transduction pathways such as G-protein-coupled receptors (GPCRs) and two-component regulatory systems, allowing fungi to sense external cues and modulate their physiological responses. Genetic mechanisms also play a critical role in fungal communication, influencing community dynamics through regulatory genes governing hyphal fusion, pheromone signaling, and secondary metabolite biosynthesis. Crosstalk between these signaling pathways is further modulated by epigenetic modifications, which fine-tune gene expression in response to environmental conditions. The integration of these molecular networks shapes fungal interactions, impacting resource acquisition, symbiosis, and pathogenicity. Additionally, fungal communication has significant ecological and evolutionary implications, contributing to niche establishment, microbial competition, and host-pathogen interactions. Despite significant progress in understanding fungal communication, key knowledge gaps remain regarding the interplay between signaling molecules, genetic regulation, and environmental adaptation. Future research should focus on unraveling the molecular mechanisms underlying fungal signaling networks and their potential applications in biotechnology, agriculture, and medicine. Harnessing fungal communication could lead to novel strategies for improving crop protection, developing antifungal therapies, and optimizing industrial fermentation processes. This review synthesizes recent advancements in fungal signaling research, providing a comprehensive perspective on its complexity and evolutionary significance.

分类号:

  • 相关文献
作者其他论文 更多>>