HAD-YOLO: An Accurate and Effective Weed Detection Model Based on Improved YOLOV5 Network
文献类型: 外文期刊
第一作者: Deng, Long
作者: Deng, Long;Miao, Zhonghua;Deng, Long;Zhao, Xueguan;Yang, Shuo;Zhai, Changyuan;Zhao, Chunjiang;Zhao, Xueguan;Zhai, Changyuan;Zhao, Chunjiang;Gao, Yuanyuan
作者机构:
关键词: weed identification; YOLOV5; HAD-YOLO; deep learning; small target detection; multi-scale feature fusion; precision agriculture
期刊名称:AGRONOMY-BASEL ( 影响因子:3.4; 五年影响因子:3.8 )
ISSN:
年卷期: 2025 年 15 卷 1 期
页码:
收录情况: SCI
摘要: Weeds significantly impact crop yields and quality, necessitating strict control. Effective weed identification is essential to precision weeding in the field. Existing detection methods struggle with the inconsistent size scales of weed targets and the issue of small targets, making it difficult to achieve efficient detection, and they are unable to satisfy both the speed and accuracy requirements for detection at the same time. Therefore, this study, focusing on three common types of weeds in the field-Amaranthus retroflexus, Eleusine indica, and Chenopodium-proposes the HAD-YOLO model. With the purpose of improving the model's capacity to extract features and making it more lightweight, this algorithm employs the HGNetV2 as its backbone network. The Scale Sequence Feature Fusion Module (SSFF) and Triple Feature Encoding Module (TFE) from the ASF-YOLO are introduced to improve the model's capacity to extract features across various scales, and on this basis, to improve the model's capacity to detect small targets, a P2 feature layer is included. Finally, a target detection head with an attention mechanism, Dynamic head (Dyhead), is utilized to improve the detection head's capacity for representation. Experimental results show that on the dataset collected in the greenhouse, the mAP for weed detection is 94.2%; using this as the pre-trained weight, on the dataset collected in the field environment, the mAP for weed detection is 96.2%, and the detection FPS is 30.6. Overall, the HAD-YOLO model has effectively addressed the requirements for accurate weed identification, offering both theoretical and technical backing for automatic weed control. Future efforts will involve collecting more weed data from various agricultural field scenarios to validate and enhance the generalization capabilities of the HAD-YOLO model.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
TMVF: Trusted Multi-View Fish Behavior Recognition with correlative feature and adaptive evidence fusion
作者:Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi;Yan, Xinting;Zhao, Chunjiang;Zhou, Chao;Zhao, Zhenxi
关键词:Multi-source domain feature evidence vector; fusion; Trusted deep multi-view learning; Fish behavior recognition; Fish Behavior Recognition Dataset; Associative cross-fusion
-
An Improved iTransformer with RevIN and SSA for Greenhouse Soil Temperature Prediction
作者:Wang, Fahai;Wang, Yiqun;Chen, Wenbai;Zhao, Chunjiang
关键词:time-series prediction; iTransformer; singular spectrum analysis; reversible instance normalization; greenhouse control
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Selective adsorption-photocatalytic synergistic breakdown of sulfamethazine in milk using loaded molecularly imprinted Ag3PO4/ TiO2 films
作者:Li, Yingying;Xie, Jiawen;Situ, Wenbei;Song, Xianliang;Li, Yingying;Gao, Yuanyuan;Huang, Xiaobing;Zhou, Wei;Li, Jihua;Song, Xianliang
关键词:Photocatalytic mechanism; Selective adsorption; Ag 3 PO 4 /TiO 2; Molecularly imprinted films; Antibiotics