Vis-NIR and NIR hyperspectral imaging combined with convolutional neural network with attention module for flaxseed varieties identification
文献类型: 外文期刊
第一作者: Zhu, Dongyu
作者: Zhu, Dongyu;Han, Junying;Liu, Chengzhong;Zhang, Jianping;Qi, Yanni
作者机构:
关键词: Hyperspectral imaging; Flaxseed; Identification; Convolutional neural network; Channel attention and transformer modules
期刊名称:JOURNAL OF FOOD COMPOSITION AND ANALYSIS ( 影响因子:4.6; 五年影响因子:4.6 )
ISSN: 0889-1575
年卷期: 2025 年 137 卷
页码:
收录情况: SCI
摘要: The screening and identifying flax germplasm resources are critical for achieving precise flax breeding and variety enhancement. This study integrates hyperspectral imaging (HSI) technology with deep learning to identify flaxseed varieties. Hyperspectral images were captured for 15 flaxseed varieties across two spectral ranges: Vis-NIR (380-1018 nm) and NIR (870-1709 nm). PCA and LDA were utilized to visually cluster these varieties. To automatically learn the spectral features and improve model performance, a one-dimensional convolutional neural network (CAM-TM-1DCNN) embedded with a channel attention module (CAM) and transformer module (TM) was developed for rapid recognition of flaxseed varieties. Experimental results validate the model's efficacy. Compared with ELM, BPNN, LSTM and 1DCNN classification models, the CAM-TM-1DCNN demonstrated superior classification performance in the NIR spectral range, achieving a test accuracy of 95.26 %. Moreover, all models performed better in the NIR spectral range compared to the Vis-NIR spectral range. The study also evaluated the impact of SPA and CARS feature selection algorithms on the classification models, confirming that the full-spectrum-based CAM-TM-1DCNN model outperformed others. These findings suggest that the CAM-TM-1DCNN model can effectively identify flaxseed varieties, providing a novel strategy and viable technical approach for future flaxseed variety recognition based on HSI technology.
分类号:
- 相关文献
作者其他论文 更多>>
-
Real-Time Corn Variety Recognition Using an Efficient DenXt Architecture with Lightweight Optimizations
作者:Zhao, Jin;Liu, Chengzhong;Han, Junying;Zhang, Linzhe;Zhou, Yuqian;Li, Yongsheng
关键词:at nodulation; corn plant; image classification; deep learning; DenseNet 121
-
Genome-Wide Identification and Expression Profiling of Dehydration-Responsive Element-Binding Family Genes in Flax (Linum usitatissimum L.)
作者:Wang, Yan;Niu, Yamin;Lu, Nan;Hu, Zuyu;Liu, Zigang;Zhang, Jianping;Wang, Yan;Qi, Yanni;Wang, Limin;Xu, Chenmeng;Li, Wenjuan;Dang, Zhao;Zhao, Wei;Wang, Ping;Xie, Yaping;Niu, Yamin;Lu, Nan;Hu, Zuyu;Zhang, Jianping;Liu, Zigang
关键词:flax;
DREB ; transcription factors; abiotic stress; expression analysis -
Genetic analysis and identification of major locus and candidate genes linked to thousand-seed weight in flax (Linum usitatissimum)
作者:Qi, Yanni;Wang, Limin;Li, Wenjuan;Dang, Zhao;Zhao, Wei;Wang, Ping;Xie, Yaping;Xu, Chenmeng;Wang, Yan;Zhang, Jianping;Wang, Wei
关键词:Flax; TSW; BSA-seq; Fine mapping; qRT-PCR
-
Potato Plant Variety Identification Study Based on Improved Swin Transformer
作者:Xing, Xue;Liu, Chengzhong;Han, Junying;Ma, Baixiong;Feng, Quan;Qi, Enfang;Qu, Yaying
关键词:deep learning; potato; Swin Transformer; convolutional neural network; variety identification
-
Flaxseed protein content prediction based on hyperspectral wavelength selection with fractional order ant colony optimization
作者:Wang, Bo;Han, Junying;Liu, Chengzhong;Zhang, Jianping;Qi, Yanni
关键词:hyperspectral imaging; wavelength selection; visible-near infrared; protein content; fractional order ant colony optimization
-
LEHP-DETR: A model with backbone improved and hybrid encoding innovated for flax capsule detection
作者:Wang, Changshun;Han, Junying;Liu, Chengzhong;Zhang, Jianping;Qi, Yanni
关键词:
-
Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for rapid and nondestructive determination of multiple nutritional qualities in flaxseed
作者:Zhu, Dongyu;Han, Junying;Liu, Chengzhong;Zhang, Jianping;Qi, Yanni
关键词:Hyperspectral imaging; Flaxseed; Data fusion; Multiple nutritional qualities; Visualization