Identifying Key Traits for Screening High-Yield Soybean Varieties by Combining UAV-Based and Field Phenotyping
文献类型: 外文期刊
第一作者: Yang, Chen
作者: Yang, Chen;Yang, Guijun;Yang, Chen;Yang, Guijun;Pan, Di;Ren, Pengting;Feng, Haikuan;Li, Heli;Yang, Guijun;Wang, Haorang;Li, Simeng;Zhang, Jiaoping
作者机构:
关键词: UAV; phenotyping; varieties screening; cluster; soybean traits
期刊名称:REMOTE SENSING ( 影响因子:4.1; 五年影响因子:4.8 )
ISSN:
年卷期: 2025 年 17 卷 4 期
页码:
收录情况: SCI
摘要: The breeding of high-yield varieties is a core objective of soybean breeding programs, and phenotypic trait-based selection offers an effective pathway to achieve this goal. The aim of this study was to identify the key phenotypic traits of high-yield soybean varieties and to utilize these traits for screening high-yield soybean varieties. In this study, the UAV (unmanned aerial vehicle)- and field-based phenotypic data were collected from 1923 and 1015 soybean breeding plots at the Xuzhou experimental site in 2022 and 2023, respectively. First, the soybean varieties were grouped by using a self-organizing map and K-means clustering to investigate the relationships between various traits and soybean yield and to identify the key ones for selecting high-yield soybean varieties. It was shown that the duration of canopy coverage remaining above 90% (Tcc90) was a critical phenotypic trait for selecting high-yield varieties. Moreover, high-yield soybean varieties typically exhibited several key phenotypic traits such as rapid development of canopy coverage (Tcc90r, the time when canopy coverage first reached 90%), prolonged duration of high canopy coverage (Tcc90), a delayed decline in canopy coverage (Tcc90d, the time when canopy coverage began to decline below 90%), and moderate-to-high plant height (PH) and hundred-grain weight (HGW). Based on these findings, a method for screening high-yield soybean varieties was proposed, through which 87% and 72% of high-yield varieties (top 5%) in 2022 and 2023, respectively, were successfully selected. Additionally, about 9% (in 2022) and 10% (in 2023) of the low-yielding (bottom 60%) were misclassified as high-yielding. This study demonstrates the benefit of high-throughput phenotyping for soybean yield-related traits and variety screening and provides helpful insights into identifying high-yield soybean varieties in breeding programs.
分类号:
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Maternal Supplementation of Collagen Peptide Chelated Trace Elements Enhances Skeletal Muscle Development in Chicks
作者:Wang, Jiao;Lv, Zengpeng;Huang, Zhenwu;Li, Simeng
关键词:Collagen peptide chelated trace elements; Maternal nutrition; Breeder hens; Muscle development; Offspring
-
Latex microspheres lateral flow immunoassay with smartphone-based device for rapid detection of Cryptococcus
作者:Zang, Xuelei;Zhou, Yangyu;Zang, Xuefeng;Lin, Xuwen;Deng, Hui;Huang, Yemei;Xue, Xinying;Zang, Xuelei;Deng, Hengyu;Xue, Xinying;Li, Shuming;Shi, Gang;Wu, Lidong;Cao, Jingrong;Yang, Ruonan;Yang, Chen;Wu, Ningxin;Song, Chao
关键词:
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning