Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce
文献类型: 外文期刊
第一作者: Yu, Shuan
作者: Yu, Shuan;Shao, Song;Zhao, Chunjiang;Yu, Shuan;Fan, Jiangchuan;Lu, Xianju;Wen, Weiliang;Shao, Song;Guo, Xinyu;Zhao, Chunjiang
作者机构:
关键词: plant phenotyping; hyperspectral imaging; deep learning; lettuce; SSC; pH
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: The currently available methods for evaluating most biochemical traits of plant phenotyping are destructive and have extremely low throughput. However, hyperspectral techniques can non-destructively obtain the spectral reflectance characteristics of plants, which can provide abundant biophysical and biochemical information. Therefore, plant spectra combined with machine learning algorithms can be used to predict plant phenotyping traits. However, the raw spectral reflectance characteristics contain noise and redundant information, thus can easily affect the robustness of the models developed via multivariate analysis methods. In this study, two end-to-end deep learning models were developed based on 2D convolutional neural networks (2DCNN) and fully connected neural networks (FCNN; Deep2D and DeepFC, respectively) to rapidly and non-destructively predict the phenotyping traits of lettuces from spectral reflectance. Three linear and two nonlinear multivariate analysis methods were used to develop models to weigh the performance of the deep learning models. The models based on multivariate analysis methods require a series of manual feature extractions, such as pretreatment and wavelength selection, while the proposed models can automatically extract the features in relation to phenotyping traits. A visible near-infrared hyperspectral camera was used to image lettuce plants growing in the field, and the spectra extracted from the images were used to train the network. The proposed models achieved good performance with a determination coefficient of prediction ( R-p(2)) of 0.9030 and 0.8490 using Deep2D for soluble solids content and DeepFC for pH, respectively. The performance of the deep learning models was compared with five multivariate analysis method. The quantitative analysis showed that the deep learning models had higher R-p(2 ) than all the multivariate analysis methods, indicating better performance. Also, wavelength selection and different pretreatment methods had different effects on different multivariate analysis methods, and the selection of appropriate multivariate analysis methods and pretreatment methods increased more time and computational cost. Unlike multivariate analysis methods, the proposed deep learning models did not require any pretreatment or dimensionality reduction and thus are more suitable for application in high-throughput plant phenotyping platforms. These results indicate that the deep learning models can better predict phenotyping traits of plants using spectral reflectance.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds
作者:Peng, Weifeng;Shi, Wanlu;Liu, Zi;Guo, Xinyu;Zhang, Yunxia;Li, Bing;Li, Guoyin;Cao, Jingya;Yang, Mingsheng;Zhang, Yiyuan;Gao, Lei
关键词:Goat; Selection pressure; Environment; Signatures of Selection; SNP
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning