Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean ( Vigna radiata L.) and potential mitigation strategy

文献类型: 外文期刊

第一作者: Wang, Yu

作者: Wang, Yu;Li, Xin;Huang, Xueying;Lu, Qian;Qian, Meng;Shen, Zhenguo;Xia, Yan;Zhuang, Kai;Liu, Yanli;Peng, Yizhe;Chen, Xin;Peng, Kejian

作者机构:

关键词: Mung bean; Cadmium contamination; Cd 2+net influx; VrNramp5; Hairy root transformation

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:5.7; 五年影响因子:6.4 )

ISSN: 0981-9428

年卷期: 2025 年 220 卷

页码:

收录情况: SCI

摘要: Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean ( Vigna radiata L.) cultivar Sulu (SL) and its three mutant lines (20#, 09#, and 06#) were used to compare the difference in Cd absorption, accumulation, and tolerance through pot and field experiments. 20#, 09#, and 06# are Cd-tolerant germplasms of mung bean but exist in different Cd tolerance mechanisms, 20# exhibited the lowest Cd absorption capacity, 09# possessed lower Cd translocation capacity, while 06# accumulated more Cd in protoplasts. Mung bean germplasms with higher Cd tolerance generally showed lower absorption capacity and intracellular accumulation of Cd. Besides, Cd accumulation in mung bean seeds is mainly depended on the absorption and translocation of Cd in roots and the Cd concentration in leaves, exogenous Mn supply inhibited the Cd2+ net influx of roots and Cd accumulation in seeds, this trend was more pronounced in mung bean germplasms with higher Cd accumulation and absorption. Moreover, we characterized a Cd transporter gene VrNramp5, which was differentially expressed in different mung bean lines, overexpression of VrNramp5 increased Cd accumulation and was accompanied by Cdsensitive phenotype in transgenic mung bean seedlings, and the Cd concentration of mung bean was significantly positively correlated with the expression levels of VrNramp5. Taken together, our findings demonstrated that different Cd tolerance mechanisms exist in mung bean. 20# is the new Cd-tolerant germplasm with low Cd absorption capacity and Cd accumulation in seeds, and has great potential for the safe production of mung bean in Cd-contaminated soils and the breeding of low Cd accumulation crop cultivars.

分类号:

  • 相关文献
作者其他论文 更多>>