Role of Enterococcus mundtii in gut of the tomato leaf miner ( Tuta absoluta) ) to detoxification of Chlorantraniliprole

文献类型: 外文期刊

第一作者: Chen, Yao

作者: Chen, Yao;Chen, Yaping;Sun, Zhongxiang;Du, Ewei;Zi, Xiaoyan;Tian, Chaoxin;Zhao, Wenyuan;Gui, Furong;Zhang, Yibo;Zhang, Guifen;Li, Yahong;Ding, Jiasheng

作者机构:

关键词: Enterococcus mundtii; Tuta absoluta; Insecticide resistance; Metabolism; Transcriptomes

期刊名称:PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY ( 影响因子:4.2; 五年影响因子:4.6 )

ISSN: 0048-3575

年卷期: 2024 年 204 卷

页码:

收录情况: SCI

摘要: Chlorantraniliprole (CAP) is applied worldwide for the control of caterpillars (Lepidoptera). However, with the overuse of CAP, the resistance problem in pest control is becoming increasingly serious. Recent studies have indicated a central role of the gut symbiont in insect pest resistance to pesticides and these may apply to the tomato leaf miner Tuta absoluta, is one of the most destructive insects worldwide. Here, we successfully isolated seven strains of tolerant CAP bacterium from the CAP-resistant T. absoluta gut, of which Enterococcus mundtii E14 showed the highest CAP tolerance, with a minimum inhibitory concentration (MIC) of 1.6 g/L and CAP degradation rate of 42.4%. Through transcriptomics and metabolism analysis, we studied the detoxification process of CAP by the E. mundtii E14, and found that CAP can be degraded by E. mundtii E14 into non-toxic compounds, such as 3,4-dihydroxy-2-(5-hydroxy-3,7-dimethylocta-2,6-dien-1-yl) benzoic acid and 2-pyridylacetic acid. Additionally, 2-pyridylacetic acid was detected both intracellular and extracellular in E. mundtii E14 treated with CAP. Meanwhile, we identified 52 up-regulated genes, including those associated with CAP degradation, such as RS11670 and RS19130. Transcriptome results annotated using KEGG indicated significant enrichment in upregulated genes related to the glyoxylate cycle, nitrogen metabolism, and biosynthesis of secondary metabolites. Additionally, we observed that reinfection with E. mundtii E14 may effectively enhance resistance of T. absoluta to CAP. The LC50 values of the antibiotic treatment population of T. absoluta reinfection with E. mundtii E14 is 0.6122 mg/L, which was 18.27 folds higher than before reinfection. These findings offer new insights into T. absoluta resistance to CAP and contribute to a better understanding of the relationship between insecticide resistance and gut symbionts of T. absoluta, which may play a pivotal role in pest management.

分类号:

  • 相关文献
作者其他论文 更多>>