Cholesterol 25-Hydroxylase Suppresses Swine Acute Diarrhea Syndrome Coronavirus Infection by Blocking Spike Protein-Mediated Membrane Fusion
文献类型: 外文期刊
第一作者: Liu, Dakai
作者: Liu, Dakai;Shi, Da;Shi, Hongyan;Zhang, Liaoyuan;Zhang, Jiyu;Zeng, Miaomiao;Feng, Tingshuai;Yang, Xiaoman;Zhang, Xin;Chen, Jianfei;Jing, Zhaoyang;Ji, Zhaoyang;Zhang, Jialin;Feng, Li
作者机构:
关键词: cholesterol 25-hydroxylase; SADS-CoV; spike protein; membrane fusion
期刊名称:VIRUSES-BASEL ( 影响因子:4.7; 五年影响因子:4.8 )
ISSN:
年卷期: 2023 年 15 卷 12 期
页码:
收录情况: SCI
摘要: Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging porcine intestinal coronavirus that can cause acute diarrhea, vomiting, rapid weight loss, and high mortality in newborn piglets. Cholesterol 25-hydroxylase (CH25H) is a molecular mediator of innate antiviral immunity and converts cholesterol to 25-hydroxycholesterol (25HC). Previous studies have reported that CH25H and 25HC have an antiviral effect against multiple viruses. However, the interplay between SADS-CoV infection and CH25H or 25HC is still uncertain. Here, we found that CH25H and its enzymatic product 25HC restrained SADS-CoV replication by blocking membrane fusion. Our results show that CH25H was upregulated by SADS-CoV infection in vitro and in vivo, and that it was an IFN-stimulated gene in porcine ileum epithelial cells. Moreover, CH25H and CH25H mutants lacking catalytic activity can inhibit SADS-CoV replication. Furthermore, 25HC significantly suppressed SADS-CoV infection by inhibiting virus entry. Notably, we confirmed that CH25H and 25HC blocked SADS-CoV spike protein-mediated membrane fusion. Our data provide a possible antiviral therapy against SADS-CoV and other conceivable emerging coronaviruses in the future.
分类号:
- 相关文献
作者其他论文 更多>>
-
A novel antifungal peptide, SP1.2, from Rhodopseudomonas palustris against the rice blast pathogen
作者:Wu, Xiyang;Qin, Yingfei;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong;Wu, Xiyang;Qin, Yingfei;Li, Chenggang;Zhang, Xin;Tan, Xinqiu;Liu, Yong;Chen, Yue;Zhang, Deyong
关键词:SP1.2 peptide; antifungal activity; ROS burst; Magnaporthe oryzae; rice defense
-
The new CFEM protein CgCsa required for Fe 3+homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides
作者:Liu, Sizhen;Bu, Zhigang;Zhu, Yonghua;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Liu, Sizhen;Zhang, Xin;Chen, Yue;Sun, Qianlong;Wu, Fei;Guo, Sheng;Tan, Xinqiu;Tan, Xinqiu
关键词:Colletotrichum gloeosporioides; CgCsa; CFEM; Pathogenicity; Iron
-
Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract
作者:Shu, Xin;Zheng, Xiaotong;Chen, Ziwei;Zhang, Jilong;Zhuang, Wuchao;Chen, Jianfei;Shu, Xin;Zheng, Xiaotong;Chen, Ziwei;Chen, Jianfei;Hua, Guoying
关键词:chicken; RT-qPCR; stable reference gene; RNA-seq; oviduct
-
Nitrification inhibitor 3,4-dimethylpyrazole phosphate alleviates the dissolution of soil inorganic carbon caused by nitrogen fertilization
作者:Zhao, Yi;Zhao, Yi;Meng, Fanqiao;Zhao, Yi;Bol, Roland;Xiao, Guangmin;Zhang, Xin;Tan, Yuechen;Bol, Roland
关键词:Soil inorganic carbon; Pedogenic carbonates; DMPP; Soil carbon stocks; delta C-13
-
Comprehensive Analysis of the DnaJ/HSP40 Gene Family in Maize (Zea mays L.) Reveals that ZmDnaJ96 Enhances Abiotic Stress Tolerance
作者:Cao, Liru;Wang, Guorui;Pang, Yunyun;Zhang, Qianjin;Zhang, Xin;Wang, Zhenghua;Lu, Xiaomin;Cao, Liru;Lu, Xiaomin;Fahim, Abbas Muhammad
关键词:DnaJ; HSP40; Gene resources; Evolution; Drought; Heat stress
-
Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses
作者:Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling;Zhang, Xin;Yu, Yongchen;Zhang, Jin;Qian, Xiaona;Li, Xiwang;Sun, Xiaoling
关键词:jasmonates; biosynthesis; tea plant; defense response; biotic stress; abiotic stress
-
Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species
作者:Li, Zhongyuan;Chen, Yunyan;Li, Liang;Xue, Mei;Feng, Li
关键词:TGEV; PEDV; PDCoV; replication; aminopeptidase N (APN)