Effects of Permanent Raised Beds on Soil Chemical Properties in a Wheat-Maize Cropping System

文献类型: 外文期刊

第一作者: Li Hui

作者: Li Hui;He Jin;Wang Qingjie;Li Hongwen;Sivelli, Amerigo;Lu Caiyun;Zheng Zhiqi;Zhang Xiangcai;Lu Zhanyuan

作者机构:

关键词: Permanent raised beds;soil chemical properties;soil organic carbon;total nitrogen;double cropping system

期刊名称:SOIL SCIENCE ( 影响因子:1.122; 五年影响因子:1.628 )

ISSN: 0038-075X

年卷期: 2013 年 178 卷 1 期

页码:

收录情况: SCI

摘要: Traditional tillage (TT) in the North China Plain has maintained grain productivity in the past 50 years. Nonetheless, it has also been a major contributor to global greenhouse gas emissions, biodiversity and soil fertility loss, soil degradation, and even desertification. Permanent raised beds (PRB) have been proposed as a viable solution to achieve sustainable farming in this plain. The effects on soil chemical properties of the PRB treatment and two other treatments, namely, no-tillage and TT treatments, were measured between 2005 and 2011 in the annual double cropping regions of the North China Plain. The soil properties significantly (P < 0.05) affected by the different treatments. Stratification ratios of soil organic carbon, total nitrogen, available N, available phosphorus, and available potassium under PRB (>1.35) were significantly (P < 0.05) higher than those under no-tillage and TT. In the cropping zone of PRB, the bulk density was significantly reduced by 14.4%, whereas soil organic carbon, total nitrogen, phosphorus, and potassium and available nitrogen, phosphorus, and potassium in the 0- to 10-cm soil layer were significantly increased by 24.8%, 78.8%, 121.9%, 81.8%, 46.2%, 7.0%, 2.9%, respectively, in comparison with those of TT treatments. Winter wheat and summer maize yields in PRB also underwent a slight increase. Permanent raised beds seem to be an improvement on current farming systems in the North China Plain and valuable for the sustainability of farming in this region.

分类号:

  • 相关文献

[1]Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Zhang, Wenju,Xu, Minggang,Wang, Boren,Wang, Xiujun.

[2]Effects of various fertilizations on soil organic carbon and total nitrogen in winter wheat-summer corn rotation in the Huang-Huai-Hai Plain of China. Nie, Sheng-wei,Huang, Shao-min,Zhang, Shui-qing,Guo, Dou-dou. 2012

[3]Crop yield and soil organic matter after long-term straw return to soil in China. Wang, Jinzhou,Xu, Minggang,Zhang, Wenju,Lu, Chang'ai,Wang, Jinzhou,Feng, Gu,Wang, Jinzhou,Wang, Xiujun,Wang, Xiujun.

[4]The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvo-aquic soil of North China. Yang, Jun,Ren, Shun-rong,Liu Hailong.

[5]Long-Term Fertilizer Experiment Network in China: Crop Yields and Soil Nutrient Trends. Poulton, Paul,Powlson, David,Todd, Alan,Payne, Roger,Zhao, Bing-qiang,Li, Xiu-ying,Li, Xiao-ping,Shi, Xiao-jun,Huang, Shao-min,Wang, Bo-ren,Zhu, Ping,Yang, Xue-yun,Liu, Hua,Chen, Yi.

[6]Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications. Liu Jian,Zhai Li-mei,Luo Chun-yan,Liu Hong-bin,Wang Hong-yuan,Liu Shen,Liu Jian,Zuo Qiang,Zou Guo-yuan,Ren Tian-zhi. 2016

[7]Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System. Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Chen, Wei-Kai,Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Bai, Xian-Jin,Cao, Mu-Ming,Cheng, Guo,Cao, Xiong-Jun,Guo, Rong-Rong. 2017

[8]Responses of soil properties, microbial community and crop yields to various rates of nitrogen fertilization in a wheat-maize cropping system in north-central China. Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,He, Ping,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,He, Ping,Cao, Caiyun,Zheng, Chunlian.

[9]Effect of biofumigation and chemical fumigation on soil microbial community structure and control of pepper Phytophthora blight. Wang, Qiujun,Ma, Yan,Yang, Hao,Chang, Zhizhou.

[10]Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil. Fang, Yu,Yan, Zhi-Lei,Chen, Ji-Chen,Wang, Fei,Wang, Ming-Kuang,Lin, Xin-Jian. 2015

[11]Soil Microbiological and Biochemical Properties as Affected by Different Long-Term Banana-Based Rotations in the Tropics. Zhong Shuang,Jin Zhiqiang,Zhong Shuang,Zeng Huicai. 2015

[12]Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. Guo Wei,Qi Xue-bin,Li Ping,Li Zhong-yang,Fan Xiang-yang,Zhou Yuan,Guo Wei,Zhou Yuan,Andersen, Mathias N.,Qi Xue-bin,Li Ping,Li Zhong-yang,Fan Xiang-yang. 2017

[13]Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Chen, Manjia,Tao, Liang,Li, Fangbai,Lan, Qing. 2014

[14]CARAGANA FABR. PROMOTES REVEGETATION AND SOIL REHABILITATION IN SALINE-ALKALI WASTELAND. Zhang, Lizhen,Fan, JingJing,Meng, Qiuxia,Niu, Yu. 2013

[15]The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu, China. Liu, Chen,Xu, JianMing,Liu, Chen,Ding, NengFei,Fu, QingLin,Guo, Bin,Lin, YiCheng,Li, Hua,Li, Ningyu. 2013

[16]Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity. Qiu, Shan-Lian,Wang, Li-Min,Huang, Dong-Feng,Lin, Xin-Jian. 2014

[17]Rootstocks influence fruit oleocellosis in 'Hamlin' sweet orange (Citrus sinensis L. Osbeck). Zheng, Yongqiang,Deng, Lie,He, Shaolan,Yi, Shilai,Zheng, Yongqiang,Zhou, Zhiqin,Zhao, Xuyang,Wang, Liang.

[18]Effects of controlled traffic no-till system on soil chemical properties and crop yield in annual double-cropping area of the North China Plain. Lu, Caiyun,Li, Hongwen,He, Jin,Wang, Qingjie,Sarker, Khokan Kumer,Li, Wenying,Rasaily, Rabi G.,Li, Hui,Lu, Caiyun,Lu, Zhanyuan,Chen, Guangnan.

[19]Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Xian, Qiming,Chang, Zhizhou,Xian, Qiming,Hu, Lixia,Chen, Hancheng,Zou, Huixian.

[20]SOIL BIOLOGICAL AND BIOCHEMICAL QUALITY OF WHEAT-MAIZE CROPPING SYSTEM IN LONG-TERM FERTILIZER EXPERIMENTS. Qi, Ying-Chun,Hu, Cheng.

作者其他论文 更多>>