Systemic analysis of gene expression profiles in porcine granulosa cells during aging

文献类型: 外文期刊

第一作者: Li Hui

作者: Li Hui;Guo Shuangshuang;Yu Jianning;Shi Zhendan

作者机构:

关键词: granulosa cell;aging;porcine;gene expression;RNA-seq;Gerotarget

期刊名称:ONCOTARGET ( 影响因子:5.168; 五年影响因子:5.312 )

ISSN: 1949-2553

年卷期: 2017 年 8 卷 57 期

页码:

收录情况: SCI

摘要: Current studies have revealed that aging is a negative factor that suppresses granulosa cell functions and causes low fertility in women. However, the difference in gene expression between normal and aging granulosa cells remains undefined. Therefore, the aim of this study was to investigate the gene expression profiles of granulosa cells during aging. Granulosa cells from young healthy porcine ovaries were aged in vitro by prolonging the culture time (for 48h). First, the extracellular ultrastructure was observed by scanning electron microscopy followed by RNA-seq and KEGG pathway analysis. The results showed that the extracellular ultrastructure was significantly altered by aging; cell membranes were rough, and cavitations were found. Moreover, the formations of filopodia were greatly reduced. RNA-seq data revealed that 3411 genes were differentially expressed during aging, of which 2193 genes were up-regulated and 1218 genes were down-regulated. KEGG pathway analysis revealed that 25 pathways including pathway in cancer, PI3K-Akt signaling pathway, focal adhesion, proteoglycans in cancer, and cAMP signaling pathway were the most changed. Moreover, several high differentially expressed genes (CEBPB, CXCL12, ANGPT2, IGFBP3, and BBOX1) were identified in aging granulosa cells, The expressions of these genes and genes associated with extracellular matrix remodeling associated genes (TIMP3, MMP2, MMP3, and CTGF), energy metabolism associated genes (SLC2A1, PPAR gamma) and steroidogenesis associated genes (StAR, CYP11A1 and LHCGR) were confirmed by quantitative PCR. This study identifies the differently changed pathways and their related genes, contributes to the understanding of aging in granulosa cells, and provides an important foundation for further studies.

分类号:

  • 相关文献

[1]RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis. Zhang, Guo-Liang,Zhang, Rui-Qian,Sun, Xiao-Feng,Cheng, Shun-Feng,Wang, Yu-Feng,Ge, Wei,Zhao, Yong,Shen, Wei,Li, Lan,Zhang, Guo-Liang,Ji, Chuan-Liang,Yu, Jie,Zhang, Guo-Liang,Sun, Shi-Duo,Feng, Yan-Zhong. 2017

[2]Transcriptome sequencing analysis of porcine granulosa cells treated with an anti-inhibin antibody. Lei, Mingming,Cai, Liuping,Li, Hui,Chen, Zhen,Shi, Zhendan. 2017

[3]Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation. Zhu, Guiyu,Pan, Dengke,Mu, Yulian,Feng, Shutang,Zhu, Guiyu,Guo, Bingran. 2008

[4]Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). Zhang, Chunsha,Zhang, Hongwei,Liang, Yi,Zhan, Zongxiang,Liu, Bingjiang,Chen, Zhentai. 2016

[5]De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Zeng, Tao,Zhang, Liping,Li, Jinjun,Wang, Deqian,Tian, Yong,Lu, Lizhi,Zhang, Liping.

[6]Selection of endogenous reference genes for gene expression analysis in the mediterranean species of the Bemisia tabaci (Hemiptera: Aleyrodidae) complex. Su, Yun-Lin,He, Wen-Bo,Liu, Shu-Sheng,Wang, Xiao-Wei,Wang, Jia,Li, Jun-Min.

[7]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

[8]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[9]Global gene expression responses to waterlogging in roots of sesame (Sesamum indicum L.). Wang, Linhai,Zhang, Yanxin,Qi, Xiaoqiong,Li, Donghua,Wei, Wenliang,Zhang, Xiurong. 2012

[10]Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake. Xu, Jian,Li, Qiang,Xu, Liming,Jiang, Yanliang,Zhao, Zixia,Zhang, Yan,Li, Jiongtang,Dong, Chuanju,Xu, Peng,Sun, Xiaowen,Wang, Shaolin,Dong, Chuanju. 2013

[11]Transciptomic and histological analysis of hepatopancreas, muscle and gill tissues of oriental river prawn (Macrobrachium nipponense) in response to chronic hypoxia. Sun, Shengming,Fu, Hongtuo,Zhu, Jian,Ge, Xianping,Xuan, Fujun,Gu, Zhimin. 2015

[12]DE NOVO TRANSCRIPTOME ANALYSIS OF MULBERRY (MORUS L.) UNDER DROUGHT STRESS USING RNA-SEQ TECHNOLOGY. Wang, Heng,Tong, Wei,Feng, Li,Jiao, Qian,Long, Li,Fang, Rongjun,Zhao, Weiguo,Long, Li,Zhao, Weiguo,Fang, Rongjun,Zhao, Weiguo.

[13]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[14]Development of a 44 K custom oligo microarray using 454 pyrosequencing data for large-scale gene expression analysis of Camellia sinensis. Wang, Lu,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Zhou, Yanhua,Yang, Yajun,Wang, Lu,Wang, Xinchao,Zhou, Yanhua,Wang, Xinchao,Yue, Chuan,Cao, Hongli,Yang, Yajun.

[15]Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content. Yan, Ning,Zhang, Hongbo,Zhang, Zhongfeng,Du, Yongmei,Liu, Xinmin,Liu, Yanhua,Shi, John,Timko, Michael P..

[16]Transcriptome comparison in the pituitary-adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure. Luo, Wei,Xu, Haiping,Nie, Qinghua,Luo, Wei,Xu, Haiping,Nie, Qinghua,Luo, Wei,Xu, Haiping,Nie, Qinghua,Fang, Meixia,Xing, Huijie.

[17]Expression, Regulation, and Functional Characterization of FST Gene in Porcine Granulosa Cells. Zhou, QuanYong,Wan, MingChun,Wei, QiPeng,Song, QiongLi,Xiong, LiGen,Huo, JunHong,Huang, JiangNan.

[18]Lipopolysaccharide and heat stress impair the estradiol biosynthesis in granulosa cells via increase of HSP70 and inhibition of smad3 phosphorylation and nuclear translocation. Li, Hui,Cai, Liuping,Shi, Zhendan,Guo, Shuangshuang,Ma, Weiming.

[19]Regulation of FoxO1 transcription factor by nitric oxide and cyclic GMP in cultured rat granulosa cells (Retracted article. See vol 24, pg 281, 2007). Li, Xuebin,Jiang, Yongqing,Wang, Zhengchao,Liu, Gentao,Hutz, Reinhold J.,Liu, Wenbin,Xie, Zhuang,Shi, Fangxiong. 2005

[20]Fas-Associated Death Domain (FADD) Mediated Activation of a Apoptosis Program in Bovine Follicular Granulosa Cells. Yang, Run-Jun,Li, Jun-Ya,Gao, Xue,Zhang, Lu-Pei,Gao, Hui-Jiang,Xu, Shang-Zhong,Yang, Run-Jun,Zhao, Zhi-Hui. 2011

作者其他论文 更多>>