The cell death-inducing protein BcPlp1 from Botrytis cinerea contributes to pathogenicity and modulates plant resistance
文献类型: 外文期刊
第一作者: Nie, Xiaofei
作者: Nie, Xiaofei;Wang, Ziyao;Huang, Binbin;Xu, Ran;Yu, Shuang;Xiong, Chao;Liu, Zhiguo;Bi, Kai;Zhu, Wenjun;Gu, Qiongnan;Wei, Wei
作者机构:
关键词: Botrytis cinerea; Grey mould and rot diseases; CDIPs; Plant resistance; Virulence
期刊名称:PLANT SCIENCE ( 影响因子:4.1; 五年影响因子:5.1 )
ISSN: 0168-9452
年卷期: 2025 年 356 卷
页码:
收录情况: SCI
摘要: Botrytis cinerea is a necrotrophic plant pathogen fungus with a broad host range, causing grey mould and rot diseases in many important crops, leading to significant economic losses in agriculture. Cell death-inducing proteins (CDIPs) secreted by necrotrophic phytopathogens promote plant tissue death and play important roles in infection. However, the mechanisms by which CDIPs induce cell death in B. cinerea-plants interactions remain unclear. Here, we demonstrate that the B. cinerea CDIP BcPlp1 is secreted into the plant apoplast where it induces cell death. BcPlp1 is a cysteine-rich protein, and four out of the 8 cysteine residues and a conserved Nterminal alpha-helix structure are essential for its cell death-inducing activity. A purified GST-tagged BcPlp1 fusion protein triggered cell death in multiple plant species, up-regulated expression of defense-related genes and enhanced plant resistance to B. cinerea. Additionally, the cell death-inducing activity of BcPlp1 was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Furthermore, BcPlp1 was not necessary for colony morphology, conidial production, growth rate, and stress tolerance. Although deletion of BcPlp1 did not affect virulence, its overexpression led to larger disease lesion, highlighting its contribution to B. cinerea pathogenicity when upregulated.
分类号:
- 相关文献
作者其他论文 更多>>
-
Tillage effect on soil N uptake and utilization by the changes of chiA and aprA gene under parallel nitrogen application
作者:Ran, Linling;Wang, Junqiang;Wu, Haoyang;Xue, Yunyin;Hu, Xinkun;Qiu, Xiaoqin;Yan, Shuang;Wang, Jinglong;Wei, Wei;Wang, Jinglong;Wei, Wei;Shi, Hao;Zheng, Shaikun
关键词:Tillage; chiA; aprA; Nitrogen; Nitrogen uptake efficiency (NUpE); Nitrogen utilization efficiency (NUtE)
-
Tillage effects on maize yield, N use efficiency and GHG emissions under parallel N application in Northwest China
作者:Wu, Hao-yang;Ran, Lin-ling;Wang, Jun-qiang;Yan, Shuang;Zhang, Yu;Shi, Hao;Zheng, Shai-kun;Xue, Yun-yin;Wang, Jun-qiang;Xia, Fei;Wei, Wei
关键词:Tillage practices; Maize yield; NUE; N balance and N surplus; GHG emission; Semi-arid agroecosystem
-
The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro
作者:Yang, Qingran;Yang, Qingran;Guo, Haoran;Li, Huili;Li, Zhaoxue;Ni, Fushun;Wei, Wei;Wen, Zhongmei;Liu, Kai;Kong, Huihui;Kong, Huihui;Wei, Wei
关键词:
-
Combined exposure to microplastics and copper elicited size-dependent uptake and toxicity responses in red swamp crayfish ( Procambarus clarkia)
作者:Zeng, Huixin;Zhong, Yanfei;Luo, Mingzhong;Wei, Wei;Xu, Xiaoli
关键词:Microplastics; Copper; Accumulation; Combined toxicity; Antioxidant enzyme
-
Ingenious integration of synthetic biology and droplet microfluidics
作者:Zhang, Panrui;Wu, Haoyu;Zhang, Runxin;Zhao, Danshan;Wei, Wei;Yang, Qiaoyi;Shi, Tianqiong;Wang, Yuetong;Zhang, Panrui;Wu, Haoyu;Zhang, Runxin;Zhao, Danshan;Wei, Wei;Yang, Qiaoyi;Shi, Tianqiong;Wang, Yuetong;Wang, Zhe;Wang, Zhe
关键词:Synthetic biology; Droplet microfluidics; High-throughput; Green biofabrication; Cell-free systems
-
Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
作者:Yu, Shao-Shuai;Wei, Wei
关键词:'one pathogen, one disease' concept; plant pathobiome paradigm; co-infection; unculturable plant pathogen; plant disease prevention
-
Cloning and characterization of one novel PR1 gene from Coptis chinensis responding to southern blight
作者:Xu, Ran;Li, Xiaohan;Ming, Yue;Bi, Kai;Wang, Limei;Wang, Hongxun;Zhu, Wenjun;Wang, Bo;You, Jingmao
关键词:Coptis chinensis; Plant defense; PR1 protein; Southern blight; Transcriptome