An Improved Combination of Spectral and Spatial Features for Vegetation Classification in Hyperspectral Images
文献类型: 外文期刊
第一作者: Fu, Yuanyuan
作者: Fu, Yuanyuan;Zhao, Chunjiang;Yang, Guijun;Song, Xiaoyu;Feng, Haikuan;Fu, Yuanyuan;Zhao, Chunjiang;Yang, Guijun;Song, Xiaoyu;Feng, Haikuan;Fu, Yuanyuan;Zhao, Chunjiang;Yang, Guijun;Song, Xiaoyu;Feng, Haikuan;Fu, Yuanyuan;Zhao, Chunjiang;Yang, Guijun;Song, Xiaoyu;Feng, Haikuan;Wang, Jihua;Jia, Xiuping
作者机构:
关键词: hyperspectral image;vegetation classification;feature selection;scatter-matrix-based class separability;Gabor features
期刊名称:REMOTE SENSING ( 影响因子:4.848; 五年影响因子:5.353 )
ISSN: 2072-4292
年卷期: 2017 年 9 卷 3 期
页码:
收录情况: SCI
摘要: Due to the advances in hyperspectral sensor technology, hyperspectral images have gained great attention in precision agriculture. In practical applications, vegetation classification is usually required to be conducted first and then the vegetation of interest is discriminated from the others. This study proposes an integrated scheme (SpeSpaVS_ClassPair_ScatterMatrix) for vegetation classification by simultaneously exploiting image spectral and spatial information to improve vegetation classification accuracy. In the scheme, spectral features are selected by the proposed scatter-matrix-based feature selection method (ClassPair_ScatterMatrix). In this method, the scatter-matrix-based class separability measure is calculated for each pair of classes and then averaged as final selection criterion to alleviate the problem of mutual redundancy among the selected features, based on the conventional scatter-matrix-based class separability measure (AllClass_ScatterMatrix). The feature subset search is performed by the sequential floating forward search method. Considering the high spectral similarity among different green vegetation types, Gabor features are extracted from the top two principal components to provide complementary spatial features for spectral features. The spectral features and Gabor features are stacked into a feature vector and then the ClassPair_ScatterMatrix method is used on the formed vector to overcome the over-dimensionality problem and select discriminative features for vegetation classification. The final features are fed into support vector machine classifier for classification. To verify whether the ClassPair_ScatterMatrix method could well avoid selecting mutually redundant features, the mean square correlation coefficients were calculated for the ClassPair_ScatterMatrix method and AllClass_ScatterMatrix method. The experiments were conducted on a widely used agricultural hyperspectral image. The experimental results showed that (1) the The proposed ClassPair_ScatterMatrix method could better alleviate the problem of selecting mutually redundant features, compared to the AllClass_ScatterMatrix method; (2) compared with the representative mutual information-based feature selection methods, the scatter-matrix-based feature selection methods generally achieved higher classification accuracies, and the ClassPair_ScatterMatrix method especially, produced the highest classification accuracies with respect to both data sets (87.2% and 90.1%); and (3) the proposed integrated scheme produced higher classification accuracy, compared with the decision fusion of spectral and spatial features and the methods only involving spectral features or spatial features. The comparative experiments demonstrate the effectiveness of the proposed scheme.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance
作者:Wen, Tiantian;Fu, Yuanyuan;Yue, Jibo;Guo, Wei;Liu, Juan;Li, Yuheng
关键词:Agroathelia rolfsii Sacc; canopy hyperspectral reflectance; spectral index
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Microscopic observation and transcriptome analysis provide insights into mechanisms of hybrid incompatibility in Rhododendron
作者:Xie, Weijia;Li, Shifeng;Peng, Lvchun;Wang, Jihua;Zhang, Lu;Song, Jie;Huang, Hui;Oba, Elias G.
关键词:Rhododendron; Interspecific hybridization; Intraspecific hybridization; Microscopic observation; Transcriptome analysis