Dwarfing apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes

文献类型: 外文期刊

第一作者: Zhou Bei-bei

作者: Zhou Bei-bei;Sun Jian;Liu Song-zhong;Jin Wan-mei;Zhang Qiang;Wei Qin-ping

作者机构:

关键词: dwarfing apple rootstock;SH series rootstocks;heat stress;physiological features

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 5 期

页码:

收录情况: SCI

摘要: The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfing apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series (SH series) showed better heat stress resistance than those of Budagovski 9 (B9), Cornell-Geneva 24 (CG24), and Mailing 26 (M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content (LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no significant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic efficiency (P-n) of CG24, there was no significant increase in leaf conductivity, and 7 days after the treatment, the P-n of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment (OA), which was reflected by smaller reductions in leaf relative water content (RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks.

分类号:

  • 相关文献

[1]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[2]Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.). Wang, Ronghua,Xu, Liang,Wang, Yan,Liu, Liwang,Wang, Ronghua,Mei, Yi,Guo, Jun,Zhu, Xianwen. 2018

[3]mRNA Expression of Glutathione S-Transferase Pi (GSTP1) under Heat Stress and Association of Genotypes with Heat Tolerance Ability in Holstein. Lai, Song-Jia,Li, Qiu-Ling,Wang, Chang-Fa,Wang, Hong-Mei,Zhong, Ji-Feng. 2011

[4]Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. Tian, He,Zheng, Nan,Li, Songli,Zhang, Yangdong,Wang, Jiaqi,Wang, Weiyu,Cheng, Jianbo.

[5]Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Gao, Guizhen,Li, Jun,Li, Hao,Li, Feng,Xu, Kun,Yan, Guixin,Chen, Biyun,Qiao, Jiangwei,Wu, Xiaoming.

[6]Transcriptome and digital gene expression analysis of herbaceous peony (Paeonia lactiflora Pall.) to screen thermo-tolerant related differently expressed genes. Hao, Zhaojun,Tao, Jun,Hao, Zhaojun,Wei, Mengran,Gong, Saijie,Zhao, Daqiu,Tao, Jun,Zhao, Daqiu,Tao, Jun.

[7]De novo transcriptome sequencing of pakchoi (Brassica rapa L. chinensis) reveals the key genes related to the response of heat stress. Xu, Hai,Song, Bo,Chen, Jinfeng,Xu, Hai,Chen, Longzheng,Song, Bo,Fan, Xiaoxue,Yuan, Xihan.

[8]Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Zhang, C. X.,Feng, B. H.,Chen, T. T.,Zhang, X. F.,Tao, L. X.,Fu, G. F..

[9]Genome-wide analysis of gene expression profiles during early ear development of sweet corn under heat stress. Li, Yuliang,Hu, Jianguang,Liu, Jianhua,Suo, Haicui,Yu, Yongtao,Han, Fuguang.

[10]Exposing eggs to high temperatures affects the development, survival and reproduction of Harmonia axyridis. Zhang, Shize,Cao, Zhu,Wang, Qiaoli,Liu, Tong-Xian,Zhang, Shize,Cao, Zhu,Wang, Qiaoli,Liu, Tong-Xian,Zhang, Fan.

[11]Effect of nitrogen regimes on narrowing the magnitude of maize yield penalty caused by high temperature stress in North China Plain. Yan, Peng,Chen, Yuanquan,Dadouma, Adamou,Tao, Zhiqiang,Sui, Peng,Tao, Zhiqiang.

[12]Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows. Wang, J. P.,Bu, D. P.,Wang, J. Q.,Huo, X. K.,Guo, T. J.,Wei, H. Y.,Zhou, L. Y.,Wang, J. P.,Rastani, R. R.,Baumgard, L. H.,Li, F. D..

[13]Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Jiang, Hua,Sun, Guo-Chang,Xue, Da-Wei,Zhang, Xiao-Qin,Qian, Qian,Hu, Jiang,Guo, Long-Biao,Zeng, Da-Li,Dong, Guo-Jun,Qian, Qian.

[14]Climate warming may increase aphids' dropping probabilities in response to high temperatures. Ma, Chun-Sen.

[15]A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. Qiao, Bei,Zhang, Qian,Liu, Dongliang,Wang, Haiqi,Yin, Jingya,Wang, Rui,He, Mengli,Cui, Meng,Shang, Zhonglin,Zhu, Zhengge,Wang, Dekai.

[16]Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions. Mishra, Neelam,Sun, Li,Zhu, Xunlu,Smith, Jennifer,Esmaeili, Nardana,Zhang, Hong,Srivastava, Anurag Prakash,Yang, Xiaojie,Pehlivan, Necla,Luo, Hong,Shen, Guoxin,Jones, Don,Auld, Dick,Burke, John,Payton, Paxton.

[17]De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Zeng, Tao,Zhang, Liping,Li, Jinjun,Wang, Deqian,Tian, Yong,Lu, Lizhi,Zhang, Liping.

[18]Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants. Pehlivan, Necla,Sun, Li,Jarrett, Philip,Mishra, Neelam,Zhang, Hong,Yang, Xiaojie,Chen, Lin,Shen, Guoxin,Kadioglu, Asim.

[19]Phenotype analysis of mycelium growth regeneration after heat stress in a Lentinula edodes F-2 population. Shen, Yingyue,Cai, Weiming,Jin, Qunli,Feng, Weilin,Fan, Lijun,Song, Tingting,Li, Liangying,Zhou, Shuohong.

[20]High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs. Hao, Zhaojun,Liu, Ding,Hao, Zhaojun,Liu, Ding,Gong, Saijie,Zhao, Daqiu,Tao, Jun,Zhao, Daqiu,Tao, Jun.

作者其他论文 更多>>