ESTIMATING LEAF NITROGEN CONCENTRATION IN BARLEY BY COUPLING HYPERSPECTRAL MEASUREMENTS WITH OPTIMAL COMBINATION PRINCIPLE
文献类型: 外文期刊
第一作者: Xu, Xingang
作者: Xu, Xingang;Zhao, Chunjiang;Song, Xiaoyu;Yang, Xiaodong;Yang, Guijun
作者机构:
关键词: Leaf nitrogen concentration;Normalized reflectance;Hyperspectral parameters;Optimal combination principle;Linear programming algorithm;Estimating model
期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )
ISSN: 1079-8587
年卷期: 2014 年 20 卷 4 期
页码:
收录情况: SCI
摘要: Leaf nitrogen concentration (LNC), as a key indicator of nitrogen (N) status, can be used to evaluate N nutrient levels and improve fertilizer regulation in fields. Due to the non-destructive and quick detection, hyperspectral remote sensing with hundreds of very narrow bands plays an unique role in monitoring LNC in crop, but most of the current methods using hyperspectral techniques are still based on spectral univariate analyses, which often bring about the unstability of the models for LNC estimates. By introducing the optimal combination principle to conduct multivariate analyses and form the combination model, this paper proposes a new method with hyperspectral measurments to estimate LNC in barley. First, this study analyzed the relationships between LNC in barley and three types of spectral parameters including spectral position, area features, vegetation indices, and established the quantitative models of determining LNC with the key spectral variables, then using the optimal combination method with linear programming algorithm conducted multivariate analyses for accuracy improvements by calculating the optimal weights to construct the combination model of evaluating LNC. The results showed that most of the three types of spectral variables had significant correlations with LNC under confidence level of 1%, and the univariate models with the key spectral variables (such as Dr and (lambda r + lambda b)/lambda y)) could well describe the dynamic pattern of LNC changes in barley with the determination coefficients (R 2) of 0.620 and 0.622, and root mean square errors (RMSE) of 0.619 and 0.620, respectively, but by comparison the combination model with Dr and lambda b/lambda y exhibited the better fitting with R-2 of 0.702 and RMSE of 0.574. This analysis indicates that hyperspectral measurements displays good potential to effectively estimate LNC in barley, and the optimal combination (OC) method has the better adaptability and accuracy due to the optimal selection of spectral parameters responding LNC, and can be applied for reliable estimation of LNC. The preliminary results of coupling hyperspectral measurements with optimal combination principle to estimate LNC can also provide new ideas for hyperspectral monitoring of other biochemical constituents.
分类号:
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Adaptive precision cutting method for rootstock grafting of melons: modeling, analysis, and validation
作者:Chen, Shan;Zhao, Chunjiang;Chen, Shan;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang;Jiang, Kai;Zheng, Wengang;Jia, Dongdong;Zhao, Chunjiang
关键词:Melon; Grafting robot; Adaptive cutting; Rootstock pith cavity; Machine vision
-
Long-range infrared absorption spectroscopy and fast mass spectrometry for rapid online measurements of volatile organic compounds from black tea fermentation
作者:Yang, Chongshan;Li, Guanglin;Zhao, Chunjiang;Fu, Xinglan;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Zhao, Chunjiang;Dong, Daming;Yang, Chongshan;Jiao, Leizi;Wen, Xuelin;Lin, Peng;Duan, Dandan;Dong, Daming;Dong, Chunwang
关键词:Black tea fermentation; Volatile organic compounds; Proton transfer reaction mass spectrometry; Fourier transform infrared spectroscopy; Principal component analysis; Extreme learning machine
-
Navigation line extraction algorithm for corn spraying robot based on YOLOv8s-CornNet
作者:Guo, Peiliang;Diao, Zhihua;Ma, Shushuai;He, Zhendong;Zhao, Suna;Zhao, Chunjiang;Li, Jiangbo;Zhang, Ruirui;Yang, Ranbing;Zhang, Baohua
关键词:agricultural robotics; computer vision; deep learning; navigation line extraction; network lightweight
-
An ultra-lightweight method for individual identification of cow-back pattern images in an open image set
作者:Wang, Rong;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Wang, Rong;Zhao, Chunjiang;Gao, Ronghua;Li, Qifeng;Zhao, Chunjiang;Ding, Luyu;Yu, Ligen;Ma, Weihong;Ru, Lin
关键词:Cow-back pattern; Cow recognition; LightCowsNet; Open image set; Deep learning