A COMPARATIVE ANALYSIS OF SPECTRAL VEGETATION INDICES TO ESTIMATE CROP LEAF AREA INDEX

文献类型: 外文期刊

第一作者: Fu, Yuanyuan

作者: Fu, Yuanyuan;Yang, Guijun;Wang, Jihua;Feng, Haikuan;Fu, Yuanyuan;Yang, Guijun;Wang, Jihua;Feng, Haikuan;Fu, Yuanyuan;Wang, Jihua

作者机构:

关键词: Leaf Area Index;Spectral Vegetation Indices;Soil Background;Leaf Chlorophyll Concentration;Sensitivity Function

期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )

ISSN: 1079-8587

年卷期: 2013 年 19 卷 3 期

页码:

收录情况: SCI

摘要: Leaf area index (LAI) is a key variable to reflect crop growth status and forecast crop yield. Many spectral vegetation indices (SVIs) suffer the saturation effect which limits the usefulness of optical remote sensing for crop LAI retrieval. Besides, leaf chlorophyll concentration and soil background reflectance are also two main factors to influence crop LAI retrieval using SVIs. In order to make better use of SVIs for crop LAI retrieval, it is significant to evaluate the performances of SVIs under varying conditions. In this context, PROSPECT and SAILH models were used to simulate a wide range of crop canopy reflectance in an attempt to conduct a comparative analysis. The sensitivity function was introduced to investigate the sensitivity of SVIs over the range of LAI. This sensitivity function is capable of quantifying the detailed relationship between SVIs and LAI. It is different with the regression based statistical parameters, such as coefficient of determination and root mean square, can only evaluate the overall performances of SVIs. The experimental results indicated that (1) LAI = 3 was an appropriate demarcation point for comparative analyses of SVIs; (2) when LAI was no more than three, the variations of soil background had significant negative effects on SVIs. LAI Determining Index (LAIDI), Optimized Soil-adjusted Vegetation Index (OSVI) and Renormalized Difference Vegetation Index (RDVI) were relatively optimal choices for LAI retrieval; (3) when LAI was larger than three, leaf chlorophyll concentration played an important role in influencing the performances of SVIs. Enhanced Vegetation Index 2(EVI2), LAIDI, RDVI, Soil Adjusted Vegetation Index (SAVI), Modified Triangular Vegetation Index 2(MTVI2) and Modified Chlorophyll Absorption Ratio Index 2 (MCARI2) were less affected by leaf chlorophyll concentration and had better performances due to their higher sensitivity to LAI even when LAI reached seven. The analytical results could be used to guide the selection of optimal SVIs for crop LAI retrieval in different phenology periods.

分类号:

  • 相关文献

[1]Quantifying the Impact of NDVIsoil Determination Methods and NDVIsoil Variability on the Estimation of Fractional Vegetation Cover in Northeast China. Ding, Yanling,Zheng, Xingming,Zhao, Kai,Liu, Huanjun,Zheng, Xingming,Zhao, Kai,Xin, Xiaoping. 2016

[2]The optimal leaf area index for cucumber photosynthesis and production in plastic greenhouse. Xiaolei, S,Zhifeng, W. 2004

[3]Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Lili Mao,Lizhen Zhang,Jochem B. Evers,Michael Henke,Wopke van der Werf,Shaodong Liu,Siping Zhang,Xinhua Zhao,Baomin Wang,Zhaohu Li.

[4]Aboveground dry matter and grain yield of summer maize under different varieties and densities in North China Plain. Li, Zongxin,Liu, Kaichang,Liu, Chunxiao,Zhang, Xiuqing,Liu, Xia,Zhang, Hui,Liu, Shucong,Wang, Qingcheng,Li, Zongxin,Liu, Kaichang,Liu, Chunxiao,Zhang, Xiuqing,Liu, Xia,Zhang, Hui,Liu, Shucong,Wang, Qingcheng,Li, Quanqi. 2013

[5]Comparison of high-yield rice in tropical and subtropical environments - I. Determinants of grain and dry matter yields. Ying, JF,Peng, SB,He, QR,Yang, H,Yang, CD,Visperas, RM,Cassman, KG. 1998

[6]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[7]Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method. Wei, Chuanwen,Huang, Jingfeng,Mansaray, Lamin R.,Liu, Weiwei,Han, Jiahui,Wei, Chuanwen,Huang, Jingfeng,Mansaray, Lamin R.,Liu, Weiwei,Han, Jiahui,Mansaray, Lamin R.,Li, Zhenhai. 2017

[8]Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage. Wu, Wen-Ming,Li, Jin-Cai,Wei, Feng-Zhen,Wang, Chen-Yu,Wang, Yan-Hong,Wu, Jin-Dong,Zhang, Yi,Wu, Wen-Ming,Chen, Hong-Jian,Wang, Shi-Ji. 2013

[9]Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. Li Zhen-wang,Xin Xiao-ping,Tang Huan,Yang Fan,Chen Bao-rui,Zhang Bao-hui. 2017

[10]Poor post-silking kernel development limits summer maize yield in the North China Plain. Tao, Hongbin,Xia, Laikun,Xu, Lina,Lu, Lihua,Jin, Pengyu,Ming, Bo,Wang, Caicai,Wang, Pu,Xia, Laikun,Xu, Lina,Lu, Lihua,Wang, Caicai. 2015

[11]Research on Universality of Least Squares Support Vector Machine Method for Estimating Leaf Area Index of Winter Wheat. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Song Xiao-yu,Yang Gui-jun. 2014

[12]Assimilation of temporal-spatial leaf area index into the CERES-Wheat model with ensemble Kalman filter and uncertainty assessment for improving winter wheat yield estimation. Li He,Jiang Zhi-wei,Chen Zhong-xin,Ren Jian-qiang,Liu Bin,Hasituyu,Jiang Zhi-wei. 2017

[13]Transpiration rates of urban trees, Aesculus chinensis. Wang, Hua,Wang, Xiaoke,Zheng, Hua,Ren, Yufen,Ouyang, Zhiyun,Wang, Hua,Zhao, Ping,Gao, Fuyuan.

[14]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[15]Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization. Liu, Fengshan,Chen, Ying,Lu, Haiying,Shao, Hongbo,Liu, Fengshan,Chen, Ying.

[16]Estimation of Regional Leaf Area Index by Remote Sensing Inversion of PROSAIL Canopy Spectral Model. Li Shu-min,Li Hong,Zhou Lian-di,Sun Dan-feng. 2009

[17]Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. Li He,Chen Zhong-xin,Jiang Zhi-wei,Wu Wen-bin,Ren Jian-qiang,Liu Bin,Hasi, Tuya,Jiang Zhi-wei,Hasi, Tuya. 2017

[18]Analysis of Electric-Energy Utilization Efficiency in a Plant Factory with Artificial Light for Lettuce Production. Tong, Y.,Yang, Q.,Shimamura, S.. 2014

[19]Application of Crop Model Data Assimilation With a Particle Filter for Estimating Regional Winter Wheat Yields. Jiang, Zhiwei,Chen, Jin,Jiang, Zhiwei,Chen, Zhongxin,Liu, Jia,Ren, Jianqiang,Li, Zongnan,Sun, Liang,Li, He. 2014

[20]Utilizing the MODIS-derived leaf area index to investigate the impact of vegetation processes on hydrological simulation of macroscale catchment. Zhao, H. G.. 2018

作者其他论文 更多>>