Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum

文献类型: 外文期刊

第一作者: Lu, Jun

作者: Lu, Jun;Gao, Xiaorong;Yi, Jun;An, Lijia;Dong, Zhimin

作者机构:

关键词: Malate dehydrogenase;Organic acid;Phosphorus acquisition;Transgenic plant

期刊名称:PLANT CELL REPORTS ( 影响因子:4.57; 五年影响因子:4.463 )

ISSN: 0721-7714

年卷期: 2012 年 31 卷 1 期

页码:

收录情况: SCI

摘要: Phosphorus (P) is an essential nutrient for plant growth and development, but is generally unavailable and inaccessible in soil, since applied P is mostly fixed to aluminium (Al) and ferrum (Fe) in acidic soils and to calcium (Ca) in alkaline soils. Increased organic acid excretion is thought to be one mechanism by which plants use to enhance P uptake. In this study, we overexpressed a mitochondrial malate dehydrogenase (MDH) gene from the mycorrhizal fungi Penicillium oxalicum in tobacco. The MDH activity of transgenic lines was significantly increased compared to that of wild type. Malate content in root exudation of transgenic lines induced in response to P deficiency was 1.3- to 2.9-fold greater than that of wild type under the same condition. Among the transgenic lines that were selected for analysis, one line (M1) showed the highest level of MDH activity and malate exudate. M1 showed a significant increase in growth over wild type, with 149.0, 128.5, and 127.9% increases in biomass, when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. M1 also had better P uptake compared to wild type, with total P content increased by 287.3, 243.5, and 223.4% when grown in Al-phosphate, Fe-phosphate, and Ca-phosphate media, respectively. To our knowledge, this is the first study on improving the ability of a plant to utilize P from Al-phosphate, Fe-phosphate, and Ca-phosphate by manipulating the organic acid metabolism of the plant through genetic engineering.

分类号:

  • 相关文献

[1]Expression of mitochondrial malate dehydrogenase in improves phosphate solubilization. Lu, Jun,Gao, Xiaorong,An, Lijia,Dong, Zhimin. 2012

[2]Comparative Proteomic Analysis Shows an Elevation of Mdh1 Associated with Hepatotoxicity Induced by Copper Nanoparticle in Rats. Dong Shu-wei,Gao Zhao-hui,Li Xia,Shen Xiao-yun,Gao Zhao-hui,Xue Hui-wen. 2014

[3]Enhanced release of fluoride from rhizosphere soil of tea plants by organic acids and reduced secretion of organic acids by fluoride supply. Wang, Lixia,Xiao, Bin,Yu, Youben,Wang, Lixia,Tang, Juhong,Yang, Yajun. 2013

[4]Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Dong, Yun-wei,Liao, Ming-li. g,Meng, Xian-liang,Somero, George N.. 2018

[5]Characterization of the immunogenicity and pathogenicity of malate dehydrogenase in Brucella abortus. Han, Xiangan,Tong, Yongliang,Tian, Mingxing,Sun, Xiaoqing,Wang, Shaohui,Ding, Chan,Yu, Shengqing.

[6]Changes in sugar content and relative enzyme activity in grape berry in response to root restriction. Xie, ZhaoSen,Li, Bo,Xu, WenPing,Wang, ShiPing,Li, Bo,Forney, Charles F.. 2009

[7]Evaluation of Sanitizing Methods for Reducing Microbial Contamination on Fresh Strawberry, Cherry Tomato, and Red Bayberry. Wei, Wei,Wang, Xu,Xie, Zhongwen,Zhou, Yu,Wei, Wei,Wang, Wen,Xu, Junfeng,Liu, Yuanjing,Gao, Haiyan. 2017

[8]Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Song, Jiangfeng,Gu, Zhenxin,Song, Jiangfeng,Liu, Chunquan,Li, Dajing,Liu, Chunquan. 2013

[9]The impact of Ca2+ combination with organic acids on green tea infusions. Xu, Yong-Quan,Zhong, Xiao-Yu,Yin, Jun-Feng,Yuan, Hai-Bo,Tang, Ping,Xu, Yong-Quan,Yin, Jun-Feng,Du, Qi-Zhen. 2013

[10]Simultaneous Quantitation of Organic Acids and Monosaccharides by High-Performance Liquid Chromatography. Lu Xin,Song Guohui,Huang Jinian,Li Ruihong,Hagiwara, Shoji,Nabetani, Hiroshi. 2015

[11]Root release and metabolism of organic acids in tea plants in response to phosphorus supply. Lin, Zheng-He,Chen, Li-Song,Tang, Ning,Lin, Zheng-He,Chen, Li-Song,Jiang, Huan-Xin,Tang, Ning,Lin, Zheng-He,Chen, Rong-Bing,Zhang, Fang-Zhou,Smith, Brandon R..

[12]Effects of Potash Applied at Different Growth Phases on Tomato Yield and Quality in Greenhouse. Han Qihou,Jiang Weijie,Yu Hongjun,Wang Ming. 2012

[13]Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5 alpha improves phosphate solubilization. Gong, Mingbo,Tang, Chaoxi,Zhu, Changxiong.

[14]Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). Zhu, Haifeng,Zhu, Yifang,Zou, Jianwen,Zhao, Fang-Jie,Huang, Chao-Feng,Wang, Hua. 2015

[15]Removal of acidic interferences in multi-pesticides residue analysis of fruits using modified magnetic nanoparticles prior to determination via ultra-HPLC-MS/MS. Qi, Peipei,Wang, Zhiwei,Yang, Guiling,Xu, Hao,Wang, Xiangyun,Zhang, Hu,Wang, Qiang,Wang, Xinquan,Shang, Chunqing,Qi, Peipei,Wang, Zhiwei,Yang, Guiling,Wang, Xinquan,Xu, Hao,Wang, Xiangyun,Zhang, Hu,Wang, Qiang.

[16]Fruit Quality, Antioxidant Capacity, Related Genes, and Enzyme Activities in Strawberry (Fragaria x ananassa) Grown under Colored Plastic Films. Miao, Lixiang,Zhang, Yuchao,Yang, Xiaofang,Xiao, Jinping,Zhang, Huiqin,Zhang, Zuofa,Wang, Yuezhi,Jiang, Guihua,Jiang, Ming.

[17]Effect of Bagging on the Composition of Carbohydrate, Organic Acid and Carotenoid Contents in Mango Fruit. Zhao, Jia-Ju,Wang, Jia-Bao,Zhang, Xin-Chun,Li, Huan-Ling,Gao, Zhao-Yin.

[18]Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Liu, XX,Zhang, QW,Zhao, JZ,Li, HC,Xu, BL,Ma, XM. 2005

[19]Genetic transformation of watercress with a gene encoding for betaine-aldehyde dehydrogenase (BADH). Li, YX,Chang, FQ,Du, LQ,Guo, BH,Li, HJ,Zhang, JS,Chen, SY,Zhu, ZQ. 2000

[20]Over-expression of Oryza sativa Xrn4 confers plant resistance to virus infection. Jiang, Shanshan,Jiang, Liangliang,Jiang, Shanshan,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei,Yang, Jian,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Lin, Lin,Chen, Jianping,Yan, Fei. 2018

作者其他论文 更多>>