Potential Yield Increase of Hybrid Rice at Five Locations in Southern China

文献类型: 外文期刊

第一作者: Xiong, Hong

作者: Xiong, Hong;Xu, Fuxian;Jiang, Peng;Xie, Xiaobing;Huang, Min;Zhou, Xuefeng;Zhang, Ruichun;Chen, Jiana;Wu, Dandan;Xia, Bing;Zou, Yingbin;Jiang, Peng;Xiong, Hong;Xu, Fuxian

作者机构:

关键词: Grain yield;Hybrid rice;Inbred rice;Yield superiority

期刊名称:RICE ( 影响因子:4.783; 五年影响因子:5.23 )

ISSN: 1939-8425

年卷期: 2016 年 9 卷

页码:

收录情况: SCI

摘要: Background: A number of field studies have demonstrated that the yield potential of hybrid rice cultivars is higher than that of inbred cultivars, although the magnitude of difference between hybrid and inbred cultivars at different yield levels has not been described. The objective of this study is to compare the yield increase potential at different yield levels between hybrid and conventional rice. Ten field experiments were conducted at five locations in southern China in 2012 and 2013. At each location, two hybrid and two inbred cultivars were grown at three N levels: high (225 kg/hm(2)), moderate (161-191 kg/hm(2)) and the control, zero N (0 kg/hm(2)). Results: Hybrid rice yielded approximately 8 % more grain than did inbred cultivars in Huaiji, Binyang and Haikou; approximately 7 % more in Changsha; and approximately 19 % more in Xingyi. The high grain yields observed for hybrid rice cultivars were attributed to high grain weight and biomass accumulation at maturity. On average, rice yields were approximately 6.0-7.5 t ha(-1) (medium yield) in Huaiji, Binyang and Haikou; approximately 9.0 t ha(-1) in Changsha (high yield); and approximately 12.0 t ha(-1) (super high yield) in Xingyi. The yield gaps among Huaiji, Binyang and Haikou and Changsha were attributed to the differences in spikelets m(-2) and biomass production, whereas the yield gap between Changsha and Xingyi was caused by the differences in grain-filling percentage, grain weight and harvest index. The differences in biomass production among sites were primarily due to variation in crop growth rate induced by varied temperatures and accumulative solar radiation. Conclusions: The yield superiority of hybrid rice was relatively small in comparison with that of inbred cultivars at medium and high yield levels, but the difference was large at super high yield levels. Improving rice yields from medium to high should focus on spikelets m-2 and biomass, whereas further improvement to super high level should emphasize on grain-filling percentage, grain weight and harvest index. Favorable environmental conditions are essential for high yields in hybrid rice.

分类号:

  • 相关文献

[1]Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China. Xu Fu-xian,Xiong Hong,Jiang Peng,Xie Xiao-bing,Huang Min,Zhou Xue-feng,Zhang Rui-chun,Chen Jia-na,Wu Dan-dan,Xia Bing,Zou Ying-bin,Zou Ying-bin. 2015

[2]NO-TILLAGE AND WIDE PLANT SPACING FOR HYBRID RICE PRODUCTION IN SOUTHWEST CHINA. . 2017

[3]Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a 'special eco-site' and Nanjing, China. Li, Ganghua,Gu, Wei,Yang, Congdang,Wang, Shaohua,Ling, Qihong,Qin, Xia,Ding, Yanfeng,Xue, Lihong,Yang, Congdang.

[4]A possible mechanism for breakdown of resistance in hybrid rice to blast disease. Chen, GH,He, M. 1998

[5]Studies on the Complementary Differential Varieties and Local Physiologic Races of Magnaporthe grisea in Sichuan Province. . 2009

[6]Analysis of the Resistance to Rice Blast and False Smut of 18 Varieties of Hybrid Rice in Sichuan Province, China. Shi, Jun,Xiang, Zufen,Shi, Shoupei,Peng, Tao,Liu, Dingyou,Huang, Tingyou,Hu, Rongping. 2017

[7]Photochemical efficiency of PSII and characteristics of photosynthetic CO2 exchange in Indica and Japonica subspecies of rice and their reciprocal cross F-1 hybrids under photoinhibitory conditions. Ji, BH,Jiao, DM. 1999

[8]The Comparison in Tissue Culture Ability of Mature Embryo in Different Cultivars of Rice. Yan Li-na,Li Xia,Wu Dan,Yan Li-na. 2010

[9]Heterosis Expression of Hybrid Rice in Natural-and Short-Day Length Conditions. Zhao Bing-ran,Lv Qi-ming,Fu Xi-qin,Xin Ye-yun,Yuan Long-ping. 2015

[10]Expression-based genotyping of the rice blast resistance genes in the elite maintainer line Yixiang1B. Hu, Xiao-Hong,Zhao, Zhi-Xue,Zeng, Rui,Li, Heng-Jing,Li, De-Qiang,Fan, Jing,Li, Yan,Huang, Fu,Wang, Wen-Ming,Wang, Li,Hu, Xiao-Hong,Lin, Gang,Zhao, De-Ming,Zhao, Zhi-Xue,Zeng, Rui,Li, Heng-Jing,Li, De-Qiang,Fan, Jing,Li, Yan,Huang, Fu,Wang, Wen-Ming,Wang, Li,Hu, Xiao-Hong,Lin, Gang,Zhao, De-Ming,Shi, Jun,Zhao, Zhi-Xue,Zeng, Rui,Li, Heng-Jing,Li, De-Qiang,Fan, Jing,Li, Yan,Huang, Fu,Wang, Wen-Ming,Wang, Li,Lin, Gang,Zhao, De-Ming,Shi, Jun,Fan, Jing,Li, Yan,Wang, Wen-Ming.

[11]Genetic diversity and structure of improved indica rice germplasm. Wang, Kai,Qiu, Fulin,Angelita Dela Paz, Madonna,Xie, Fangming,Wang, Kai,Zhuang, Jieyun,Wang, Kai,Zhuang, Jieyun,Qiu, Fulin.

[12]Identification of QTLs for rice flower opening time in two environments. Zhang, Meng,Zhang, Huali,Dai, Dongqing,Li, Ximing,Chen, Junyu,Ma, Liangyong,Bao, Jinsong.

[13]Identification of WA-type three-line hybrid rice with real-time Polymerase Chain Reaction (PCR) method. Cheng, Y.,Chen, H. Y.,Mao, J. J.,Cao, A. X.,Zhu, S. F.,Cheng, Y.,Gao, B. D.,Mao, J. J.,Zhu, J. G..

[14]Effects of male sterile cytoplasm on yield and agronomic characters in Japonica hybrid rice, Oryza sativa L.. Wang, CL,Tang, SZ,Tang, YG. 1998

[15]Inheritance analysis of anther dehiscence as a trait for the heat tolerance at flowering in japonica hybrid rice (Oryza sativa L.). Zhao, Ling,Zhu, Zhen,Zhang, Yadong,Chen, Zhide,Wang, Cailin,Zhao, Ling,Zhu, Zhen,Zhang, Yadong,Chen, Zhide,Wang, Cailin,Tian, Xiaohai,Kobayasi, Kazuhiro,Hasegawa, Toshihiro,Matsui, Tsutomu.

[16]Genome-wide polymorphisms between the parents of an elite hybrid rice and the development of a novel set of PCR-based InDel markers. Wang, K.,Zhuang, J. Y.,Huang, D. R.,Ying, J. Z.,Fan, Y. Y.. 2015

[17]Male Parent Plays More Important Role in Heat Tolerance in Three-Line Hybrid Rice. Fu Guan-fu,Zhang Cai-xia,Yang Yong-jie,Yang Xue-qin,Zhang Xiu-fu,Jin Qian-yu,Tao Long-xing,Xiong Jie. 2015

[18]Characterization of an RNase Z nonsense mutation identified exclusively in environment-conditioned genic male sterile rice. Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Huang, Jian-Zhong,Nawaz, Zarqa,Lu, Hai-Ping,Shu, Qing-Yao,Zhang, Hua-Li,Lu, Hai-Ping,Shu, Qing-Yao,Liu, Qing-Long,Gong, Jun-Yi,Zhu, Yu-Jun,Yan, Wengui. 2014

[19]YIELD AND YIELD COMPONENTS OF HYBRID RICE AS INFLUENCED BY NITROGEN FERTILIZATION AT DIFFERENT ECO-SITES. Li, Ganghua,Wang, Shaohua,Tang, She,Ding, Yanfeng,Li, Ganghua,Zhang, Jun,Yang, Chongdang,Song, Yunpan,Liu, Zhenghui,Wang, Shaohua,Yang, Chongdang,Zheng, Chengyan. 2014

[20]Genome-Wide Transcriptome Profiles of Rice Hybrids and Their Parents. Zhiguo, E.,Zhang, Yuping,Wang, Lei,Huang, Shanshan,Ge, Lei. 2014

作者其他论文 更多>>