Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq

文献类型: 外文期刊

第一作者: Pan, Qi

作者: Pan, Qi;Tan, Chen;Ge, Xianhong;Li, Zaiyun;Cui, Cheng;Shao, Yujiao

作者机构:

关键词: Brassica species;allopolyploidization;differential gene expressions;transgressive gene expression;transcriptome

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brass/ca allotetraploids.

分类号:

  • 相关文献

[1]Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. Yu, Jingyin,Tehrim, Sadia,Zhang, Fengqi,Tong, Chaobo,Huang, Junyan,Cheng, Xiaohui,Dong, Caihua,Zhou, Yanqiu,Hua, Wei,Liu, Shengyi,Zhou, Yanqiu,Qin, Rui. 2014

[2]Production and genetic analysis of resynthesized Brassica napus from a B. rapa landrace from the Qinghai-Tibet Plateau and B. alboglabra. Liu, H. D.,Zhao, Z. G.,Du, D. Z.,Deng, C. R.,Fu, G.. 2016

[3]Allopolyploidy-induced rapid genomic changes in newly generated synthetic hexaploid wheat. Yu, Ma,Hou, Da-Bin,Yu, Ma,Chen, Guo-Yue,Pu, Zhi-En,Guan, Ling-Liang,Pu, Zhi-En. 2017

[4]Extensive tRNA Gene Changes in Synthetic Brassica napus. Wei, Lijuan,Xiao, Meili,Yin, Jiaming,Li, Jiana,Wei, Lijuan,Fu, Donghui,An, Zeshan,Mason, Annaliese S.,Guo, Ying. 2014

[5]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[6]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[7]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[8]Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Aiqin,Zhao, Shuzhen,Bi, Yuping,An, Jing,Wan, Shubo,Wang, Xingjun,Bi, Yuping,Wan, Shubo,Wang, Xingjun,Bi, Yuping,An, Jing,Zhao, Yanxiu,Wang, Xingjun. 2013

[9]Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution. Yang, Maohua,Mu, Tingzhen,Xing, Jianmin,Chen, Ruonan,Zhang, Xiang. 2017

[10]Transcriptome analysis of rosette and folding leaves in Chinese high-throughput RNA sequencing. Wang, Fengde,Li, Libin,Li, Huayin,Liu, Lifeng,Zhang, Yihui,Gao, Jianwei,Wang, Xiaowu. 2012

[11]Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Changsong Zou,Qiaolian Wang,Cairui Lu,Wencui Yang,Youping Zhang,Hailiang Cheng,Xiaoxu Feng,Mtawa Andrew Prosper,Guoli Song. 2016

[12]De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Kaijie Xu,Fengli Sun,Guaiqiang Chai,Yongfeng Wang,Lili Shi,Shudong Liu,Yajun Xi. 2015

[13]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[14]PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. Yang, Zuoren,Zhang, Chaojun,Yang, Xiaojie,Liu, Kun,Wu, Zhixia,Zhang, Xueyan,Zheng, Wu,Liu, Chuanliang,Lu, Lili,Yang, Zhaoen,Qian, Yuyuan,Xu, Zhenzhen,Li, Changfeng,Li, Fuguang,Xun, Qingqing,Li, Jia.

[15]Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Peng, Zhen,Cao, Moju,Xu, Jie,Lu, Yanli,Peng, Zhen,He, Shoupu,Gong, Wenfang,Sun, Junling,Pan, Zhaoe,Du, Xiongming,Sun, Gaofei.

[16]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[17]Transcriptomic Analysis of the Porcine Endometrium during Embryo Implantation. Lin, Haichao,Wang, Huaizhong,Wang, Yanping,Liu, Chang,Wang, Cheng,Guo, Jianfeng,Lin, Haichao,Wang, Yanping,Liu, Chang,Guo, Jianfeng. 2015

[18]De novo assembly of pen shell (Atrina pectinata) transcriptome and screening of its genic microsatellites. Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo,Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo. 2017

[19]Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Yu, Hai-Zhong,Wen, De-Fu,Geng, Lei,Xu, Jia-Ping,Wang, Wan-Lin,Zhang, Yan. 2015

[20]Development of Polymorphic Genic SSR Markers by Transcriptome Sequencing in the Welsh Onion (Allium fistulosum L.). Yang, Liuyi,Wen, Changlong,Zhao, Hong,Liu, Qianchun,Yang, Jingjing,Wang, Yongqin,Yang, Liuyi,Liu, Lecheng. 2015

作者其他论文 更多>>