Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops

文献类型: 外文期刊

第一作者: Wang Zheng-yin

作者: Wang Zheng-yin;Qin Yu-sheng;Zhan Shao-jun;Yu Hua;Tu Shi-hua

作者机构:

关键词: Cadmium;Soil texture;Distribution in soil profile;Rice;Wheat;Chengdu plain

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2013 年 33 卷 2 期

页码:

收录情况: SCI

摘要: Adopting atomic absorption spectrometry (novAA400), the present study investigated the distribution characteristics of soil cadmium (Cd) in different textured paddy soil profiles under rice-wheat rotation and its correlation with Cd uptake by rice and wheat in Chengdu Plain through repeatedly taking soil and plant samples at the fixed sites in the field. The results revealed that Cd in the paddy soil profiles was mainly concentrated at the plough layer (0 similar to 15 cm) that obviously featured Cd accumulates towards the rooting layer'. Soil total Cd and available Cd (1 mol . L-1 MgCl2 extraction) in the profile declined with soil depths and its average values at 30 similar to 45 cm only accounted for 47. 60% and 39. 49% of those at 0 similar to 15 cm. The potential downward movement of Cd in the different textured soil profiles was observed as sandy loam>heavy loam>loam. There was no significant correlation between soil pH and available Cd(r=-0. 46) at 0 similar to 15 cm soil depth, while significantly negative correlations between soil pH and available Cd were observed at 15 similar to 30 cm (r=-0. 78) and 30 similar to 45 cm (r=-0. 86). The results further demonstrated that the Cd contents in either grain or straw of rice and wheat were not well correlated with soil total Cd at any soil depth (r=-0. 092 similar to 0. 383 for rice and r=0. 174 similar to 0. 424 for wheat), but significantly correlated with soil available Cd at 0 similar to 15 cm and at 15 similar to 30 cm (r=0. 766*similar to 0. 953**) despite insignificant correlation at 30 similar to 45 cm (r=0. 526 similar to 0. 584). It is strongly suggested that the soil available Cd can be used as a better criterion than the total soil Cd to rate Cd contaminated soils in relation to safety of agricultural products.

分类号:

  • 相关文献

[1]Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Wang, Zhaofeng,Guo, Jie,Yang, Yingli,Li, Qien,Wu, Weiguo.

[2]Scale and causes of lead contamination in Chinese tea. Han, WY,Zhao, FJ,Shi, YZ,Ma, LF,Ruan, JY.

[3]Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. Zhou, Jian,Wang, Zegang,Huang, Zhiwei,Han, Zhuo,Ge, Cailin,Lu, Chao,Zhang, Jianfeng,Jiang, Huimin,Yang, Juncheng.

[4]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[5]Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils. Wu, Huibin,Wu, Huibin,Song, Zhengguo,Wang, Xiao,Liu, Zhongqi,Tang, Shirong.

[6]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[7]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[8]Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Ji, Xionghui,Liu, Saihua,Juan, Huang,Bocharnikova, Elena A.,Matichenkov, Vladimir V..

[9]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[10]Robust method for the analysis of phytochelatins in rice by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry based on polymeric column materials. Yu, Shasha,Bian, Yingfang,Zhou, Rong,Mou, Renxiang,Chen, Mingxue,Cao, Zhaoyun.

[11]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[12]Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Yang, Yongjie,Chen, Jiangmin,Huang, Qina,Tang, Shaoqing,Hu, Peisong,Shao, Guosheng,Chen, Jiangmin,Wang, Jianlong. 2018

[13]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[14]Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang, Xiaoqin,Chen, Huinan,Lu, Wenyi,Pan, Jiangjie,Qian, Qian,Xue, Dawei,Jiang, Hua,Qian, Qian.

[15]Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Yang, Yongjie,Fu, Guanfu,Chen, Tingting,Tao, Longxing,Xiong, Jie,Chen, Ruijie,Xiong, Jie,Chen, Ruijie.

[16]Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping,Tang, Shumei. 2014

[17]Assessment of Homogeneity and Minimum Sample Mass for Cadmium Analysis in Powdered Certified Reference Materials and Real Rice Samples by Solid Sampling Electrothermal Vaporization Atomic Fluorescence Spectrometry. Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Mao, Xuefei,Huang, Yatao,Zhang, Lihua,Tang, Xiaoyan,Zhou, Jian,Qian, Yongzhong,Wang, Min,Liu, Jixin,Feng, Li.

[18]Cadmium fate and tolerance in rice cultivars. Zhang, Jie,Sun, Wanchun,Li, Zhaojun,Liang, Yongchao,Zhang, Jie,Song, Alin,Liang, Yongchao.

[19]Iron nutrition affects cadmium accumulation and toxicity in rice plants. Shao, Guosheng,Chen, Mingxue,Wang, Weixia,Mon, Renxiang,Zhang, Guoping.

[20]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

作者其他论文 更多>>