Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology

文献类型: 外文期刊

第一作者: Zhang, Zhong

作者: Zhang, Zhong;Li, Xingang;Huang, Jian;Zhang, Zhong;Li, Xingang;Zhang, Zhong;Li, Xingang;Huang, Jian;Wei, Tianjun;Zhong, Ying

作者机构:

关键词: Genetic map;Ziziphus jujuba Mill.;Genotyping by sequencing (GBS);SNP

期刊名称:TREE GENETICS & GENOMES ( 影响因子:2.297; 五年影响因子:2.547 )

ISSN: 1614-2942

年卷期: 2016 年 12 卷 4 期

页码:

收录情况: SCI

摘要: The Chinese jujube (Ziziphus jujuba Mill., 2n = 2 x = 24), one of the most popular fruit trees in China, is widely cultivated and utilized in Asia. High-density genetic linkage maps are valuable resources for molecular breeding and functional genomics; however, they are still underdeveloped for the jujube. The genotyping by sequencing (GBS) strategy could be an efficient and cost-effective tool for single nucleotide polymorphism (SNP) discovery based on the sequenced jujube genome. Here, we report a new high-density genetic map constructed using GBS technology. An F1 population with 145 progenies and their parents ('Dongzao' x 'Zhongningyuanzao') were sequenced on the Illumina HiSeq 4000 platform. In total, 79.8 Gb of raw data containing 256,708,177 paired-end reads were generated. After data filtering and SNP genotyping, 40,372 polymorphic SNP markers were developed between the parents and 2540 (1756 non-redundant) markers were mapped onto the integrated genetic linkage map. The map spanned 1456.53 cM and was distributed among 12 linkage groups, which is consistent with the haploid chromosome number of the jujube. The average marker interval was 0.88 cM. The genetic map allowed us to anchor 224 Mb (63.7 %) of scaffolds from the sequenced 'Junzao' genome, containing 52 newly anchored scaffolds, which extended the genome assembly by 7 Mb. In conclusion, GBS technology was applied efficiently for SNP discovery in this study. The high-density genetic map will serve as a unique tool for molecular-assisted breeding and genomic studies, which will contribute to further research and improvement of the jujube in the near future.

分类号:

  • 相关文献

[1]Construction of a high-density genetic linkage map in pear (Pyrus communis x Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Wang, Long,Wu, Jun,Yin, Hao,Zhang, Shaoling,Wang, Long,Li, Xiugen,Wang, Lei,Xue, Huabai.

[2]Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing. Zhao, Zhending,Gu, Honghui,Sheng, Xiaoguang,Yu, Huifang,Wang, Jiansheng,Huang, Long,Wang, Dan. 2016

[3]Infraspecific Classification of Ziziphus jujuba Mill. Using AFLP Marker Technique. Bai, R. X.,Peng, J. Y.,Li, L.,Zhang, Y.,Li, X. Y.. 2009

[4]Core Collection Construction Based on Botanic and Agronomic Characters in Chinese Jujube. Dong, Y. H.,Liu, M. J.,Peng, J. Y.,Liu, P.,Dong, Y. H.,Li, D. K.,Zhao, Y. B.. 2009

[5]The Distribution and Grading of Biological Characters in Ziziphus jujuba Mill.. Dong, Y. H.,Liu, P.,Liu, M. J.,Peng, J. Y.,Li, D. K.. 2009

[6]A Novel DNA Extraction Method for the Detection of Jujube Witches' Broom Phytoplasmas. Yu, X. M.,Zhou, G. F.,Shan, G. H.,Wang, H. R.,An, M.,Shen, G. N.,Lv, F. F.,Zhu, E. Y..

[7]Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L.. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Qin, Yongsheng,Zhang, Yuanming,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo. 2012

[8]Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical Maps. Sharma, Sanjeev Kumar,McLean, Karen,Waugh, Robbie,Bryan, Glenn J.,Bolser, Daniel,Martin, David Michael Alan,de Boer, Jan,Visser, Richard G. F.,Bachem, Christian W. B.,Sonderkaer, Mads,Amoros, Walter,Munive, Susan,Simon, Reinhard,Bonierbale, Merideth,Carboni, Martin Federico,Feingold, Sergio E.,D'Ambrosio, Juan Martin,de la Cruz, German,Di Genova, Alex,Maass, Alejandro,Di Genova, Alex,Maass, Alejandro,Douches, David S.,Hamilton, John P.,Eguiluz, Maria,Guzman, Frank,Lozano, Roberto,Martinez, Diana,Ponce, Olga,Ramirez, Manuel,Torres, Yerisf,Orjeda, Gisella,Guo, Xiao,Li, Guangcun,Hackett, Christine A.,Li, Ying,Thomson, Susan J.,Zhang, Zhonghua,Huang, Sanwen,Mejia, Nilo,Nagy, Istvan,Milbourne, Dan,Jacobs, Jeanne M. E.,Jacobs, Jeanne M. E.,Veilleux, Richard E.. 2013

[9]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[10]Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.). Zhenzhen Xu,Chaojun Zhang,Xiaoyang Ge,Ni Wang,Kehai Zhou,Xiaojie Yang,Zhixia Wu,Xueyan Zhang,Chuanliang Liu,Zuoren Yang,Changfeng Li,Kun Liu,Zhaoen Yang,Yuyuan Qian,Fuguang Li.

[11]Simple Sequence Repeat (SSR) Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum. Joy Nyangasi Kirungu,Yanfeng Deng,Liu, Fang,Wang, Kunbo,Xiaoyan Cai,Richard Odongo Magwanga,Zhongli Zhou,Xingxing Wang,Yuhong Wang,Zhenmei Zhang,Kunbo Wang,Fang Liu. 2018

[12]Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Shang, Lianguang,Abduweli, Abdugheni,Cai, Shihu,Liu, Fang,Wang, Kunbo,Wang, Yumei.

[13]Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Haikun Qi,Huang, Qun,Yan, Gentu,Ning Wang,Wenqing Qiao,Qinghua Xu,Hong Zhou,Jianbin Shi,Gentu Yan,Qun Huang.

[14]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[15]High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. Jiang, Biao,Liu, Wenrui,Xie, Dasen,Peng, Qingwu,He, Xiaoming,Lin, Yu'e,Liang, Zhaojun,Jiang, Biao,Liu, Wenrui,Xie, Dasen,He, Xiaoming. 2015

[16]Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Guo, Baozhu,Pandey, Manish K.,Khera, Pawan,Varshney, Rajeev K.,Pandey, Manish K.,Qiao, Lixian,Feng, Suping,Khera, Pawan,Wang, Hui,Culbreath, Albert K.,Guo, Baozhu,Wang, Ming Li,Tonnis, Brandon,Barkley, Noelle A.,Qiao, Lixian,Feng, Suping,Wang, Hui,Wang, Jianping,Holbrook, C. Corley. 2014

[17]A Consensus Linkage Map Provides Insights on Genome Character and Evolution in Common Carp (Cyprinus carpio L.). Zhang, Xiaofeng,Zheng, Xianhu,Kuang, Youyi,Li, Chao,Cao, Dingchen,Lu, Cuiyun,Sun, Xiaowen,Zhang, Yan,Zhao, Zixia,Zhao, Lan,Jiang, Li,Xu, Peng. 2013

[18]Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Wang, Xicheng,Yu, Xiaoqing,Zhao, Xiongwei,Luo, Na,Garvin, David F.,Garvin, David F.. 2017

[19]High-Density Genetic Map Construction and Gene Mapping of Basal Branching Habit and Flowers per Leaf Axil in Sesame. Mei, Hongxian,Liu, Yanyang,Du, Zhenwei,Wu, Ke,Cui, Chengqi,Jiang, Xiaolin,Zhang, Haiyang,Zheng, Yongzhan. 2017

[20]Construction of a high-density SNP genetic map in fluecured tobacco based on SLAF-seq. Gong, Daping,Xu, Xiuhong,Wang, Chuanyi,Ren, Min,Wang, Chunkai,Chen, Mingli,Huang, Long,Xu, Xiuhong,Wang, Chunkai,Wang, Chunkai.

作者其他论文 更多>>