Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants

文献类型: 外文期刊

第一作者: Gao, Dongying

作者: Gao, Dongying;Xia, Han;Xu, Chunming;Abernathy, Brian;Jackson, Scott A.;Chu, Ye;Ozias-Akins, Peggy;Xia, Han;Heyduk, Karolina;Leebens-Mack, James H.

作者机构:

关键词: genome evolution;horizontal transfer;non-LTR retrotransposon;flowering plants;arthropods

期刊名称:MOLECULAR BIOLOGY AND EVOLUTION ( 影响因子:16.24; 五年影响因子:18.67 )

ISSN: 0737-4038

年卷期: 2018 年 35 卷 2 期

页码:

收录情况: SCI

摘要: Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the AnRTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution.

分类号:

  • 相关文献

[1]The impact of elevated ozone on the ornamental features of two flowering plants (Tagetes erecta linn. Petunia hybrida Vilm.). Yang, Ning,Wang, Xiaoke,Chen, Yuanyuan,Yang, Ning,Zheng, Feixiang.

[2]Resistance integrons: class 1, 2 and 3 integrons. Deng, Yang,Bao, Xuerui,Ji, Lili,Liu, Junyan,Miao, Jian,Chen, Lei,Chen, Dingqiang,Bian, Huawei,Li, Yanmei,Yu, Guangchao. 2015

[3]Horizontal transfer of facultative endosymbionts is limited by host relatedness. Lukasik, Piotr,Guo, Huifang,van Asch, Margriet,Henry, Lee M.,Godfray, H. Charles J.,Ferrari, Julia,Guo, Huifang,Ferrari, Julia.

[4]Presence of a short repeat sequence in internal transcribed spacer (ITS) 1 of the rRNA gene of Sogatella furcifera (Hemiptera: Delphacidae) from geographically different populations in Asia. Matsumoto, Yukiko,Sato, Yuki,Noda, Hiroaki,Fu, Qiang,Matsumura, Masaya.

[5]Mycangial fungus benefits the development of a leaf-rolling weevil, Euops chinesis. Ding, Jianqing,Li, Xiaoqiong,Guo, Wenfeng.

[6]Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Zhou, GY,Lu, XB,Lu, HJ,Lei, JL,Chen, SX,Gong, ZX.

[7]Effects of Dietary beta-1,3-Glucan on Expression of Immune-related Genes of Litopenaeus vannamei Exposed to Nitrite-N. Zhao, Hong-Xia,Cao, Jun-Ming,Huang, Yan-Hua,Li, Guo-Li,Lan, Han-Bing,Zhao, Hong-Xia,Wang, An-Li.

[8]Impacts of nitrogen fertilizer on major insect pests and their predators in transgenic Bt rice lines T2A-1 and T1C-19. Yang, Yajun,Liu, Kai,Xu, Hongxing,Zheng, Xusong,Tian, Junce,Lu, Zhongxian,Liu, Kai,Han, Hailiang,Wang, Guiyue,Zhang, Facheng,Chen, Guihua.

[9]Fluorescence competition assay for the assessment of green leaf volatiles and trans-beta-farnesene bound to three odorant-binding proteins in the wheat aphid Sitobion avenae (Fabricius). Yin, Jiao,Deng, Sisi,Li, Kebin,Cao, Yazhong.

[10]Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. Yu, Jingyin,Wang, Linhai,Liao, Boshou,Zhang, Xiurong,Guo, Hui,King, Graham,King, Graham. 2017

[11]Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats. Zhang, Nan,Yang, Dongqing,Kendall, Joshua R. A.,Shen, Qirong,Zhang, Ruifu,Zhang, Nan,Yang, Dongqing,Kendall, Joshua R. A.,Shen, Qirong,Zhang, Ruifu,Kendall, Joshua R. A.,Borriss, Rainer,Druzhinina, Irina S.,Kubicek, Christian P.,Zhang, Ruifu. 2016

[12]LTRtype, an Efficient Tool to Characterize Structurally Complex LTR Retrotransposons and Nested Insertions on Genomes. Zeng, Fan-Chun,Zhao, You-Jie,Gao, Li-Zhi,Zhang, Que-Jie,Gao, Li-Zhi,Zhang, Que-Jie. 2017

[13]Conserved globulin gene across eight grass genomes identify fundamental units of the loci encoding seed storage proteins. Gu, Yong Qiang,Wanjugi, Humphrey,Coleman-Derr, Devin,Anderson, Olin D.,Kong, Xiuying.

[14]Molecular evolution of the rice miR395 gene family. Guddeti, S,Zhang, DC,Li, AL,Leseberg, CH,Kang, H,Li, XG,Zhai, WX,Johns, MA,Mao, L.

[15]Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Gao, Shuangcheng,Gu, Yong Qiang,Wu, Jiajie,Coleman-Derr, Devin,Huo, Naxin,Crossman, Curt,Jia, Jizeng,Zuo, Qi,Ren, Zhenglong,Anderson, Olin D.,Kong, Xiuying.

[16]The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae. Chen, Shi-Chun,Wang, Xiao-Qing,Hu, Xiang,Peng, Ping,Li, Pin-Wu,Wang, Jin-Jun. 2016

[17]Escape from preferential retention following repeated whole genome duplications in plants. Schnable, James C.,Freeling, Michael,Wang, Xiaowu,Pires, J. Chris. 2012

作者其他论文 更多>>