Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development

文献类型: 外文期刊

第一作者: Gao, Chao

作者: Gao, Chao;Wang, Pengfei;Zhao, Shuzhen;Zhao, Chuanzhi;Xia, Han;Hou, Lei;Zhang, Ye;Li, Changsheng;Wang, Xingjun;Wang, Xingjun;Ju, Zheng

作者机构:

关键词: High-throughput sequencing;Peanut;miRNA;Hormone;Light;Embryogenesis;Pod development

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2017 年 18 卷

页码:

收录情况: SCI

摘要: Background: As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. Results: In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM 5'-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/ 157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Conclusions: Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development.

分类号:

  • 相关文献

[1]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[2]Small RNA and Degradome Deep Sequencing Reveals Peanut MicroRNA Roles in Response to Pathogen Infection. Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Cao, Tingjie,Zhang, Xinyou,Yang, Yu.

[3]Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Yang, Sha,Zhang, Jialei,Geng, Yun,Guo, Feng,Meng, Jingjing,Li, Xinguo,Li, Lin,Wang, Jianguo,Sui, Na,Wan, Shubo. 2017

[4]Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.). Li, M.,Zhao, S. Z.,Zhao, C. Z.,Zhang, Y.,Xia, H.,Wan, S. B.,Wang, X. J.,Lopez-Baltazar, J.. 2016

[5]Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. Zhu, Wei,Zhang, Erhua,Li, Haifen,Chen, Xiaoping,Zhu, Fanghe,Hong, Yanbin,Liang, Xuanqiang,Zhu, Wei,Liao, Boshou,Liu, Shengyi.

[6]Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. Sha, Zhenxia,Gong, Guangye,Lu, Yang,Wang, Lei,Chen, Songlin,Gong, Guangye,Lu, Yang,Wang, Shaolin,Wang, Qilong.

[7]Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. Wang, Yongqiang,Li, Lin,Diao, Xianmin,Tang, Sha,Zhi, Hui,Jia, Guanqing,Diao, Xianmin,Wang, Yongqiang,Liu, Jianguang,Zhang, Hanshuang. 2016

[8]Genome-Wide Characterization of miRNAs Involved in N Gene-Mediated Immunity in Response to Tobacco Mosaic Virus in Nicotiana benthamiana. Yin, Kangquan,Tang, Yang,Zhao, Jinping,Zhao, Jinping. 2015

[9]Conserved miRNAs and Their Response to Salt Stress in Wild Eggplant Solanum linnaeanum Roots. Zhuang, Yong,Zhou, Xiao-Hui,Liu, Jun. 2014

[10]Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Bi, Fangcheng,Meng, Xiangchun,Yi, Ganjun,Ma, Chao. 2015

[11]Peanut (Arachis hypogaea L.) Omics and Biotechnology in China. Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Liu, Shuan-Tao. 2011

[12]Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. Zhaoen Yang,Qian Gong,Wenqiang Qin,Qin, Wenqiang,Yang, Zhaoen,Zuoren Yang,Yuan Cheng,Lili Lu,Xiaoyang Ge,Chaojun Zhang,Zhixia Wu,Fuguang Li. 2017

[13]Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Zhang, GQ,Zhang, DQ,Tang, GX,He, Y,Zhou, WJ. 2006

[14]High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp chinensis. Gu, HH,Zhou, WJ,Hagberg, P. 2003

[15]Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Yuan, Su-xia,Su, Yan-bin,Liu, Yu-mei,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Zhang, Yang-yong,Sun, Pei-tian.

[16]Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Li, P,Hanania, U,Sahar, N,Mawassi, M,Gafny, R,Sela, I,Tanne, E,Perl, A.

[17]Cloning, molecular characterization and expression analysis of heat shock cognate 70 (Hsc70) cDNA from turbot (Scophthalmus maximus). Wang, T. T.,Wang, N.,Liao, X. L.,Meng, L.,Liu, Y.,Chen, S. L.,Wang, T. T..

[18]Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half-smooth tongue sole (Cynoglossus semilaevis). Hu, Qiaomu,Chen, Songlin,Hu, Qiaomu.

[19]Effect of combined cold pretreatment and heat shock on microspore cultures in broccoli. Yuan, S. X.,Liu, Y. M.,Fang, Z. Y.,Yang, L. M.,Zhuang, M.,Zhang, Y. Y.,Sun, P. T..

[20]Hunchback IS REQUIRED FOR ABDOMINAL IDENTITY SUPPRESSION AND GERMBAND GROWTH IN THE PARTHENOGENETIC EMBRYOGENESIS OF THE PEA APHID, Acyrthosiphon pisum. Liu, Changyan,Zeng, Fanrong.

作者其他论文 更多>>