Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice

文献类型: 外文期刊

第一作者: Zhou, Jinjun

作者: Zhou, Jinjun;Liu, Qianqian;Wang, Yingying;Zhang, Shiyong;Cheng, Huimin;Yan, Lihua;Li, Li;Xie, Xianzhi;Zhou, Jinjun;Wang, Yingying;Zhang, Shiyong;Xie, Xianzhi;Liu, Qianqian;Xie, Xianzhi;Zhang, Fang;Chen, Fan

作者机构:

关键词: Auxin;cell wall;etiolated seedling;rice;photomorphogenesis;phytochrome-interacting factor

期刊名称:JOURNAL OF INTEGRATIVE PLANT BIOLOGY ( 影响因子:7.061; 五年影响因子:6.002 )

ISSN: 1672-9072

年卷期: 2014 年 56 卷 4 期

页码:

收录情况: SCI

摘要: Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germination to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter aboveground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expression is probably involved in photomorphogenesis in rice.

分类号:

  • 相关文献

[1]Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Deng, Z.,Xu, S.,Wang, Z. -Y.,Kutschera, U.,Deng, Z.,Xu, S.,Chalkley, R. J.,Oses-Prieto, J. A.,Burlingame, A. L..

[2]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[3]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[4]High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Wu, Changyin,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Wu, Changyin,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Xie, Guosheng,Peng, Liangcai,Guo, Kai,Wu, Changyin,Tian, Jinshan,Lu, Tiegang.

[5]Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice. Zhu, Chun Q.,Zhang, Jun H.,Zhu, Lian F.,Zhong, Chu,Bai, Zhi G.,Sajid, Hussain,Cao, Xiao C.,Jin, Qian Y.,Sun, Li M.,Abliz, Buhailiqem,Hu, Wen J.. 2018

[6]Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Wu, Zhiliang,Zhang, Mingliang,Wang, Lingqiang,Tu, Yuanyuan,Zhang, Jing,Xie, Guosheng,Zou, Weihua,Li, Fengcheng,Guo, Kai,Li, Qing,Peng, Liangcai,Wu, Zhiliang,Zhang, Mingliang,Wang, Lingqiang,Tu, Yuanyuan,Zhang, Jing,Xie, Guosheng,Zou, Weihua,Li, Fengcheng,Guo, Kai,Li, Qing,Peng, Liangcai,Wu, Zhiliang,Zhang, Mingliang,Wang, Lingqiang,Tu, Yuanyuan,Zhang, Jing,Xie, Guosheng,Zou, Weihua,Li, Fengcheng,Peng, Liangcai,Guo, Kai,Li, Qing,Gao, Chunbao. 2013

[7]LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Wang, Lingling,Guo, Mengxue,Li, Yong,Ruan, Wenyuan,Mo, Xiaorong,Wu, Zhongchang,Mao, Chuanzao,Sturrock, Craig J.,Yu, Hao,Yu, Hao,Lu, Chungui,Peng, Jinrong,Ruan, Wenyuan. 2018

[8]Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. Liang, Chengzhen,Guo, Sandui,Zhang, Rui,Li, Aifu,Yu, Hua,Li, Wenzhen,Liang, Chengzhi,Chu, Chengcai. 2017

[9]Auxin Signaling is Involved in Iron Deficiency-induced Photosynthetic Inhibition and Shoot Growth Defect in Rice (Oryza sativa L.). Liu, Kaidong,Yuan, Changchun,Liu, Jinxiang,Yue, Runqing,Tie, Shuanggui,Zhang, Lei,Sun, Tao,Yang, Yanjun,Shen, Chenjia.

[10]Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Zheng, Yuyu,Zhu, Ziqiang,Cui, Xuefei,Gong, Qingqiu,Su, Liang,Yang, Jianping,Fang, Shuang,Chu, Jinfang. 2017

[11]BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Bai, Ming-Yi,Wang, Zhi-Yong,Fan, Xi-Ying,Cao, Dong-Mei,Luo, Xiao-Min,Yang, Hong-Juan,Zhu, Sheng-Wei,Chong, Kang,Fan, Xi-Ying,Sun, Yu,Wei, Chuang-Qi,Sun, Ying,Cao, Dong-Mei,Fan, Xi-Ying. 2012

[12]Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Liu, Hongtao,Liu, Yawen,Liu, Hongtao,Wang, Qin,Tobin, Elaine M.,Lin, Chentao,Wang, Qin,Zhao, Xiaoying,Zhao, Xiaoying,Imaizumi, Takato,Somers, David E..

[13]Phytochrome Signaling: Time to Tighten up the Loose Ends. Wang, Hai,Wang, Haiyang. 2015

[14]Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Liu, Bin,Zuo, Zecheng,Liu, Hongtao,Lin, Chentao,Liu, Bin,Zuo, Zecheng,Liu, Xuanming. 2011

[15]Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. Liu, Bobin,Yang, Zhaohe,Oka, Yoshito,Liu, Bobin,Gomez, Adam,Liu, Bin,Lin, Chentao.

[16]A Cotton BURP Domain Protein Interacts With -Expansin and Their Co-Expression Promotes Plant Growth and Fruit Production. Bing Xu,Jin-Ying Gou,Fu-Guang Li,Xiao-Xia Shangguan,Bo Zhao,Chang-Qing Yang,LingJian Wang,Sheng Yuan,Chang-Jun Liu,Xiao-Ya Chen. 2013

[17]THE EFFECTS OF EXTRACELLULAR CALMODULIN ON CELL-WALL REGENERATION OF PROTOPLASTS AND CELL-DIVISION. SUN, DY,BIAN, YQ,ZHAO, BH,ZHAO, LY,YU, XM,SHENGJUN, D. 1995

[18]RNA-Seq-Based Transcriptome Profiling of Early Nitrogen Deficiency Response in Cucumber Seedlings Provides New Insight into the Putative Nitrogen Regulatory Network. Zhao, Wenchao,Yang, Xueyong,Yu, Hongjun,Jiang, Weijie,Sun, Na,Liu, Xiaoran,Liu, Xiaolin,Zhang, Xiaomeng,Wang, Yan,Gu, Xingfang,Zhao, Wenchao.

[19]Expansins: roles in plant growth and potential applications in crop improvement. Marowa, Prince,Ding, Anming,Kong, Yingzhen.

[20]Analysis of 2,297 expressed sequence tags (ESTs) from a cDNA library of flax (Linum ustitatissimum L.) bark tissue. Li, Xiang,Chen, Xin-Bo,Long, Song-Hua,Deng, Xin,Wang, Yu-Fu,Qiao, Rui-Qing,Qiu, Cai-Sheng,Guo, Yuan,Hao, Dong-Mei,Jia, Wan-Qi.

作者其他论文 更多>>